Pathogenetic properties of HIV-related diffuse large B-cell lymphoma
AbstractHIV-associated T- and B-cell lymphomas occur in 40% of people living with HIV (PLWH). Non-Hodgkin’s lymphomas (NHLs) are most often diagnosed type of HIV-associated lymphomas and become the leading cause of mortality in PLWH, leading to 23–30% of all HIV-associated death. In most cases, NHLs are diagnosed in patients with low immune status, high viral load and are characterized by the aggressive clinical course. One of the most frequently detected lymphomas in PLHIV is diffuse B-large cell lymphoma. In this research the issues of the pathogenetic properties of HIV-related diffuse large B-cell lymphoma are presented.
Keywords:HIV-infection; diffuse large B-cell lymphoma; AIDS; lymphoma; HIV-related lymphoma
Funding. There is no funding to report.
Competing interest. All authors declared that there are no competing interests in this work.
Contribution. Аrticle writing, article design – Chernysheva O.O.; article writing, article design, article editing – Gadzhikulieva M.M.; article design, article editing – Tsyganova E.V.
For citation: Chernysheva O.O., Gadzhikulieva M.M., Tsyganova E.V. Pathogenetic propertiesof HIV-related diffuse large B-cell lymphoma. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2023; 12 (2): 83–92. DOI: https://doi.org/10.33029/2305-3496-2023-12-2-83-92 (in Russian)
References
1. In danger: UNAIDS Global AIDS Update 2022. Geneva: Joint United Nations Programme on HIV/AIDS, 2022.
2. Berhan A., Bayleyegn B., Getaneh Z. HIV/AIDS associated lymphoma: Review. Blood Lymphat Cancer. 2022; 12 (3): 1–45. DOI: https://doi.org/10.2147/BLCTT.S361320
3. Pongas G.N., Ramos J.C. HIV-associated lymphomas: Progress and new challenges. J Clin Med. 2022; 11 (5): 14–47. DOI: https://doi.org/10.3390/jcm11051447
4. Vangipuram R., Tyring S.K. AIDS-associated malignancies. Cancer Treat Res. 2019; 177: 1–21. DOI: https://doi.org/10.1007/978-3-030-03502-0_1
5. Riedel D.J., Rositch A.F., Redfield R.R., et al. HIV-associated lymphoma subtype distribution, immunophenotypes and survival in an urban clinic population. Leuk Lymphoma. 2015; 57 (2): 1–7. DOI: https://doi.org/10.3109/10428194.2015.1055483
6. Wu D., Chen C., Zhang M., et al. The clinical features and prognosis of 100 AIDS-related lymphoma cases. Sci Rep. 2019; 9 (1): 53–81. DOI: https://doi.org/10.1038/s41598-019-41869-9
7. Hübel K. The changing landscape of lymphoma associated with HIV infection. Curr Oncol Rep. 2020; 2 (11): 1–9. DOI: https://doi.org/10.1007/s11912-020-00973-0
8. Thandra K.C., Barsouk A., Saginala K., et al. Epidemiology of non-Hodgkin’s lymphoma. Med Sci. 2021; 9 (1): 1–9. DOI: https://doi.org/10.3390/medsci9010005
9. Schmitz R., Wright G.W., Huang D.W., et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018; 378 (15): 1396–407. DOI: https://doi.org/10.1056/NEJMoa1801445
10. Li S., Young K.H., Medeiros L.J. Diffuse large B-cell lymphoma. Pathology. 2018; 50 (1): 74–87. DOI: https://doi.org/10.1016/j.pathol.2017.09.006
11. Duffy M.J., O’Grady S., Tang M., et al. MYC as a target for cancer treatment. Cancer Treat Rev. 2021; 94: 102–54. DOI: https://doi.org/10.1016/j.ctrv.2021.102154
12. Yoshida G.J. Emerging roles of Myc in stem cell biology and novel tumor therapies. J Exp Clin Cancer Res. 2018; 37 (1): 1–20. DOI: https://doi.org/10.1186/s13046-018-0835-y
13. Zielke N., Vaharautio A., Liu J., Kivioja T., Taipale J. Upregulation of ribosome biogenesis via canonical E-boxes is required for Myc-driven proliferation. Dev Cell. 2022; 57 (8): 1024–36. DOI: https://doi.org/10.1016/j.devcel.2022.03.018
14. Gao Y., Zhang H., Lirussi F., et al. Dual inhibitors of histone deacetylases and other cancer-related targets: A pharmacological perspective. Biochem Pharmacol. 2020; 182: 114–24. DOI: https://doi.org/10.1016/j.bcp.2020.114224
15. Lourenco C., et al. MYC protein interactors in gene transcription and cancer. Nat Rev Cancer. 2021; 21 (9): 579–91. DOI: https://doi.org/10.1038/s41568-021-00367-9
16. Salam S.D., Thit E.E., Teoh S.H., et al. C-MYC, BCL2 and BCL6 translocation in B-cell non-Hodgkin lymphoma cases. J Cancer. 2020; 11 (1): 190–8. DOI: https://doi.org/10.7150/jca.36954
17. Collinge B., Ben-Neriah S., Chong L., et al. The impact of MYC and BCL2 structural variants in tumors of DLBCL morphology and mechanisms of false-negative MYC IHC. Blood. 2021; 137: 2196–208. DOI: https://doi.org/10.1182/blood.2020007193
18. Misyurina A.E., Misyurin V.A., Varyakh E.A., et al. Role of c-MYC, BCL2, and BCL6 expression in pathogenesis of diffuse large B-Cell lymphoma. Klinicheskaya onkogematologiya [Clinical Oncohematology]. 2014; 7 (4): 512–21. (in Russian)
19. Basso K., Dalla-Favera R. BCL6: Master regulator of the germinal center reaction and key oncogene in B cell lymphomagenesis. Adv Immunol. 2010; 105: 193–210. DOI: https://doi.org/10.1016/S0065-2776(10)05007-8
20. Kawabata K.C., Zong H., Meydan C., et al. BCL6 maintains survival and self-renewal of primary human acute myeloid leukemia cells. Blood. 2021; 137 (6): 812–25. DOI: https://doi.org/10.1182/blood.2019001745
21. Ladokhin A.S. Regulation of apoptosis by the Bcl-2 family of proteins: Field on a brink. Cells. 2020; 9 (9): 2121. DOI: https://doi.org/10.3390/cells9092121
22. Meister A., Hentrich M., Wyen C., et al. Malignant lymphoma in the HIV-positive patient. Eur J Haematol. 2018; 101 (1): 119–26. DOI: https://doi.org/10.1111/ejh.13082
23. He B., Qiao X., Klasse P.J., et al. HIV-1 envelope triggers polyclonal Ig class switch recombination through a CD40-independent mechanism involving BAFF and C-type lectin receptors. J Immunol. 2006; 176 (7): 3931–41. DOI: https://doi.org/10.4049/jimmunol.176.7.3931
24. Bordoni V., Sacchi A., Casetti R., et al. Cytokine Impact of ART on dynamics of growth factors and cytokines in primary HIV infection. Cytokine. 2020; 125: 139–48. DOI: https://doi.org/10.1016/j.cyto.2019.154839
25. Honge B.L., Petersen M.S., Jespersen S., et al. T-cell and B-cell perturbations are similar in ART-naive HIV-1 and HIV-1/2 dually infected patients. AIDS. 2019; 33 (7): 1143–53. DOI: https://doi.org/10.1097/QAD.0000000000002185
26. de Carvalho P.S., Leal F.E., Soares M.A. Clinical and molecular properties of human immunodeficiency virus-related diffuse large B-cell lymphoma. Front Oncol. 2021; 11: 675353. DOI: https://doi.org/10.3389/fonc.2021.675353
27. Lau D., Lan L.Y., Andrews S.F., et al. Low CD21 expression defines a population of recent germinal center graduates primed for plasma cell differentiation. Sci Immunol. 2017; 10: 1–14. DOI: https://doi.org/10.1126/sciimmunol.aai8153
28. Yan J., Zhang S., Sun J., et al. Irreversible phenotypic perturbation and functional impairment of B cells during HIV-1 infection. Front Med. 2017; 11 (4): 536–47. DOI: https://doi.org/10.1007/s11684-017-0592-x
51. Liu Q., Li A., Tian Y., et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 2016; 31: 61–71. DOI: https://doi.org/10.1016/j.cytogfr.2016.08.002
52. Binnewies M., Pollack J.L., Rudolph J., et al. Article Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 2021; 37 (3): 109844. DOI: https://doi.org/10.1016/j.celrep.2021.109844
53. Veenhuis R.T., Abreu C.M., Shirk E.N., et al. HIV replication and latency in monocytes and macrophages. Semin Immunol. 2021; 51: 114–27. DOI: https://doi.org/10.1016/j.smim.2021.101472
54. Huysentruyt L.C., McGrath M.S. The role of macrophages in the development and progression of AIDS-related non-Hodgkin lymphoma. J Leukoc Biol. 2010; 87 (4): 627–32. DOI: https://doi.org/10.1189/jlb.0809564
55. Cassol E., Cassetta L., Alfano M., et al. Macrophage polarization and HIV-1 infection. J Leukoc Biol. 2010; 87 (4): 599–608. DOI: https://doi.org/10.1189/jlb.1009673
56. Boutilier A.J., Elsawa S.F. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 2021; 22 (13): 6995. DOI: https://doi.org/10.3390/ijms22136995
57. Zenger E., Abbey N.W., Weinstein M.D., et al. Injection of human primary effusion lymphoma cells or associated macrophages into severe combined immunodeficient mice causes murine lymphomas. Cancer Res. 2002; 62 (19): 5536–42.
58. Noy A. Optimizing treatment of HIV-associated lymphoma. Blood. 2019; 134 (17): 1385–94. DOI: https://doi.org/10.1182/blood-2018-01-791400
59. Lurain K., Ramaswami R., Mangusan R., et al. Use of pembrolizumab with or without pomalidomide in HIV-associated non-Hodgkin’s lymphoma. J Immunother Cancer. 2021; 9 (2): 20–7. DOI: https://doi.org/10.1136/jitc-2020-002097
60. Uldrick T.S., Wyvill K.M., Kumar P., et al. Phase II study of bevacizumab in patients with HIV-associated Kaposi’s sarcoma receiving antiretroviral therapy. J Clin Oncol. 2012; 30 (13): 1476–83. DOI: https://doi.org/10.1200/JCO.2011.39.6853
61. Ahmed H., James A., Enghelberg M. Successful use of intravitreal bevacizumab and methotrexate in a case of neovascularization of the iris and pseudohypopyon secondary to recurrent diffuse large B-cell lymphoma. Cureus. 2022; 14 (2): 22–8. DOI: https://doi.org/10.7759/cureus.22578