Current approaches of Zika virus disease

Abstract

This article contains the epidemiological features of Zika fever manifestation. Current data on the phylogenetic characteristics of the pathogen, pathogenesis, clinical manifestations, treatment, and prevention of this disease are presented. The epidemiological risks in relation to the causative agent of Zika fever are considered.

Keywords:Zika fever; epidemiological situation; epidemiological risks; phylogenetic characteristics; pathogenesis; treatment; diagnosis; prevention

Funding. The study was not sponsored.

Conflict of interest. The authors declare that there is no conflict of interest.

Contribution. Research concept – Toporkov A.V.; research design – Zhukov K.V., Victorov D.V.; material collection – Zhukov K.V., Viktorov D.V.; material processing – Zhukov K.V.; text writing – Zhukov K.V.; editing – all authors.

For citation: Zhukov K.V., Viktorov D.V., Toporkov A.V. Current approaches of Zika virus disease. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2023; 12 (1): 97–104. DOI: https://doi.org/10.33029/2305-3496-2023-12-1-97-104 (in Russian)

REFERENCES

1.Cao-Lormeau V.M., Mons S., Lastere S., Roche C., Vanhomwegen J., Dub T., et al. Guillain-Barre Syndrome outbreak caused by ZIKA virus infection in French Polynesia Europe PMC Funders Group. Lancet [Electronic resource]. 2016; 387: 1531–9. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444521/pdf/emss-72373.pdf (date of access July 25, 2018).

2.Screaton G, Mongkolsapaya J. Evolution of neurovirulent Zika virus. Science [Electronic resource]. 2017; 358 (6365): 863–4. URL: http://www.sciencemag.org/lookup/doi/10.1126/science.aaq1297 (date of access August 08, 2018).

3.Du S., Liu Y., Liu J., Zhao J., Champagne C., Tong L., et al. Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments. Nat Commun [Electronic resource]. 2019; 10: 1–11. URL: https://doi.org/10.1038/s41467-019-09256-0 (date of access November 28, 2019).

4.Liu Z., Zhou T., Lai Z., Zhang Z., Jia Z., Zhou G., et al. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus mosquitoes as Zika virus vectors, China. Emerg Infect Dis. 2017; 23 (7): 1085–91.

5.de Noronha L., Zanluca C., Burger M., Akemi Suzukawa A., Azevedo M., Rebutini P.Z., et al. Zika virus infection at different pregnancy stages: anatomopathological findings, target cells and viral persistence in placental tissues. In: BioRxiv [Electronic resource]. 2018. 1–15. DOI: http://dx.doi.org/10.1101/370528 (date of access January 18, 2019).

6.Patterson J., Sammon M., Garg M. Dengue, zika and chikungunya: Emerging arboviruses in the new world. West J Emerg Med. 2016; 17 (6): 671–9.

7.Dick G.W., Kitchen S., Haddow A. Zika Virus (I). Isolations and serological specificity. Trans R Soc Trop Med Hyg [Electronic resource]. 1952; 46 (5): 509–20. URL: https://academic.oup.com/trstmh/article-lookup/doi/10.1016/0035-9203(52)90042-4 (date of access November 30, 2018).

8.Terzian A.C.B., Zini N., Sacchetto L., Rocha R.F., Parra M.C.P., Sarto J.L. Del Z., et al. Evidence of natural Zika virus infection in neotropical non-human primates in Brazil. Sci Rep [Electronic resource]. 2018; 8 (16 034): 1–15. URL: http://www.nature.com/articles/s41598-018-34423-6

9.Weinbren M., Williams M. Zika virus: Further isolations in the Zika area, and some studies on the strains isolated. Trans R Soc Trop Med Hyg [Electronic resource]. 1958; 52 (3): 263–8. URL: https://academic.oup.com/trstmh/article-lookup/doi/10.1016/0035-9203(58)90085-3 (date of access November 30, 2018).

10.Beaver J.T., Lelutiu N., Habib R., Skountzou I. Evolution of two major Zika virus lineages: Implications for pathology, immune response, and vaccine development. Front Immunol. 2018; 9; 1640.

11.Duffy M.R., Chen T.-H., Hancock W.T., Powers A.M., Kool J.L., Lanciotti R.S., et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009; 360 (24): 2536–43.

12.Cauchemez S., Besnard M., Bompard P., Dub T., Guillemette-Artur P., Eyrolle-Guignot D., et al. Association between Zika virus and microcephaly in French Polynesia, 2013–2015: A retrospective study. Lancet [Electronic resource]. 2016; 387 (10 033): 2125–32. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909533/pdf/nihms773990.pdf (date of access July 25, 2018).

13.Simon O., Acket B., Forfait C., Girault D., Gourinat A.-C., Millon P., et al. Zika virus outbreak in New Caledonia and Guillain-Barré syndrome: A case-control study. J Neurovirol [Electronic resource]. 2018; 24: 362–8. URL: https://doi.org/10.1007/s13365-018-0621-9 (date of access December 04, 2018).

14.Henderson A.D., Aubry M., Kama M., Vanhomwegen J., Teissier A., Mariteragi-Helle T., et al. Zika seroprevalence declines and neutralizing antibodies wane in adults following outbreaks in French Polynesia and Fiji. Elife [Electronic resource]. 2020; 9: e48460. URL: https://doi.org/10.7554/eLife.48460 (date of access March 03, 2021).

15.Bhatnagar J., Rabeneck D.B., Martines R.B., Reagan-Steiner S., Ermias Y., Estetter L.B.C., et al. Zika virus RNA replication and persistence in brain and placental tissue. Emerg Infect Dis. 2017; 23 (3): 405–14.

16.Metsky H.C., Matranga C.B., Wohl S., Schaffner S.F., Freije C.A., Winnicki S.M., et al. Zika virus evolution and spread in the Americas. Nature [Electronic resource]. 2017; 546 (7658): 411–5. URL: https://www.nature.com/articles/nature22402.pdf (date of access August 08, 2018).

17.Anaya J.-M., Ramirez-Santana C., Salgado-Castaneda I., Chang C., Ansari A., Gershwin M.E. Zika virus and neurologic autoimmunity: The putative role of gangliosides. BMC Med [Electronic resource]. 2016; 14 (49): 1–3. DOI: http://dx.doi.org/10.1016/S1473-3099 (date of access July 25, 2018).

18.Li R., Ding J., Ding G., Fan X., He Y., Wang X., et al. Zika virus infections: A review. Radiol Infect Dis [Electronic resource]. 2017; 4 (2): 88–93. DOI: http://dx.doi.org/10.1016/j.jrid.2017.01.002 (date of access April 02, 2021).

19.Pielnaa P., Al-Saadawe M., Saro A., Dama M.F., Zhou M., Huang Y., et al. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology [Electronic resource]. 2020; 543: 34–42. URL: https://pubmed.ncbi.nlm.nih.gov/32056845/ (date of access November 22, 2022).

20.Kumar A., Liang B., Aarthy M., Kumar Singh S., Garg N., Mysorekar I.U. et al. Hydroxychloroquine inhibits Zika virus NS2B-NS3 protease. ACS omega [Electronic resource]. 2018; 3: 18 132–41. URL: http://pubs.acs.org/journal/acsodf (date of access June 28, 2021).

21.Mesci P., Macia A., Moore S.M., Shiryaev S.A., Pinto A., Huang C.-T., et al. Blocking Zika virus vertical transmission. Sci Rep [Electronic resource]. 2018; 8 (1218): 1–13. URL: http://www.rcsb.org/pdb (date of access January 18, 2019).

22.Oliveira Silva Martins D., Carolina Gomes Jardim A. A review of the ongoing research on Zika virus treatment. Viruses [Electronic resource]. 2018; 10 (5): 255. URL: www.mdpi.com/journal/viruses (date of access June 28, 2021).

23.Zimmerman M.G., Quicke K.M., O’Neal J.T., Arora N., Machiah D., Priyamvada L., et al. Cross-reactive dengue virus antibodies augment Zika virus infection of human placental macrophages. Cell Host Microbe. 2018; 24 (5): 731–42.

24.Rasmussen A., Colpitts T.M., Martinez M.J., Jiménez De Oya N., Martín-Acebes M.A., Saiz J.-C. Antibody-dependent enhancement and Zika: Real threat or phantom menace? Front Cell Infect Microbiol [Electronic resource]. 2018; 8: 44. URL: http://www.paho.org/hq/index.php?option=com_topics&view=readall&cid=3273&Itemid= (date of access June 28, 2021).

25.Villinger F., Noronha L. de, Nunes Duarte dos Santos C., Ld N., Zanluca C., Burger M., et al. Zika virus infection at different pregnancy stages: Anatomopathological findings, target cells and viral persistence in placental tissues. Front Microbiol [Electronic resource]. 2018; 9: 2266. URL: www.frontiersin.org (date of access June 28, 2021).

26.Ovsyannikova I.G., Kennedy R.B. Zika vaccine development: Current status. Mayo Clin Proc [Electronic resource]. 2019; 94 (12): 2572–86. URL: https://doi.org/10.1016/j.mayocp.2019.05.016 (date of access May 17, 2021).

27.Jasperse B., O’Connell C.M., Wang Y., Verardi P.H. Single dose of a replication-defective vaccinia virus expressing Zika virus-like particles is protective in mice. Sci Rep [Electronic resource]. 2021; 11 (1): 6492. URL: https://doi.org/10.1038/s41598-021-85951-7 (date of access June 24, 2021).

28.Salisch N.C., Stephenson K.E., Williams K., Cox F., Fits L. van der, Heerwegh D., et al. A Double-blind, randomized, placebo-controlled phase 1 study of Ad26.ZIKV.001, an Ad26-vectored anti-Zika virus vaccine. Ann Intern Med [Electronic resource]. 2021; 174 (5): 585–94. URL: https://pubmed.ncbi.nlm.nih.gov/33587687/ (date of access June 24, 2021).

29.Ding Q., Gaska J.M., Douam F., Wei L., Kim D., Balev M., et al. Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease. Proc Natl Acad Sci [Electronic resource]. 2018; 115 (27): E6310–8. URL: https://www.pnas.org/content/115/27/E6310 (date of access June 25, 2021).

30.Wu Y.H., Cui X.Y., Yang W., Fan D.Y., Liu D., Wang P.G., et al. Zika virus infection in hypothalamus causes hormone deficiencies and leads to irreversible growth delay and memory impairment in mice. Cell Rep. 2018; 25 (6): 1537–47.e4.

31.Liu L., Downs M., Guidry J., Wojcik E.J. Inter-organelle interactions between the ER and mitotic apparatus facilitates Zika protease cleavage of human Kinesin-5 and contributes to distinct mitotic defects. iScience [Electronic resource]. 2021; 24 (5): 102385. DOI: https://doi.org/10.1016/j.isci (date of access May 17, 2021).

32.Ventura C.V., Zin A., Paula Freitas B. de, Ventura L.O., Rocha C., Costa F., et al. Ophthalmological manifestations in congenital Zika syndrome in 469 Brazilian children. J Am Assoc Pediatr Ophthalmol Strabismus [Electronic resource]. 2021; 25 (3): 158.e1–8. DOI: https://doi.org/10.1016/j.jaapos.2021.01.009

33.Branco R.C.C., Brasil P., Araújo J.M.G., Cardoso F.O., Batista Z.S., Leitão V.M.S., et al. Evidence of Zika virus circulation in asymptomatic pregnant women in Northeast, Brazil. PLoS Negl Trop Dis [Electronic resource]. 2021; 15 (6): e0009412. DOI: https://doi.org/10.1371/journal.pntd.0009412 (date of access June 25, 2021).

34.Cardoso T.F., Santos R.S. Dos, Corrêa R.M., et al. Congenital Zika infection: Neurology can occur without microcephaly. Arch Dis Child [Electronic resource]. 2019; 104 (2): 199–200. URL: https://adc.bmj.com/content/104/2/199 (date of access June 25, 2021).

35.Gong Z., Xu X., Han G.-Z. The diversification of Zika virus: Are there two distinct lineages? Genome Biol Evol. 2017; 9 (11): 2940–5. URL: https://academic.oup.com/gbe/article-abstract/9/11/2940/4562437 (date of access August 08, 2018).

36.Moser L.A., Boylan B.T., Moreira F.R., Myers L.J., Svenson E.L., Fedorova N.B., et al. Growth and adaptation of Zika virus in mammalian and mosquito cells. PLoS Negl Trop Dis [Electronic resource]. 2018; 12 (11): e0006880. DOI: https://doi.org/10.1371/journal.pntd.0006880.t001 (date of access June 28, 2021).

37.Kamal M., Kenawy M.A., Rady M.H., Khaled A.S., Samy A.M. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS One [Electronic resource]. 2018; 13 (12): e0210122. DOI: https://doi.org/10.1371/journal.pone.0210122 (date of access July 25, 2018).

38.Fernandes Da Costa C., Viana Da Silva A., Alves Do Nascimento V., Costa De Souza V., Cristina Da Silva Monteiro D., Cosme W., et al. Evidence of vertical transmission of Zika virus in field-collected eggs of Aedes aegypti in the Brazilian Amazon. PLoS Negl Trop Dis [Electronic resource]. 2018; 12 (7): e0006594. URL: https://doi.org/10.1371/journal.pntd.0006594 (date of access January 18, 2019).

39.Souza-Neto J.A., Powell J.R., Bonizzoni M. Aedes aegypti vector competence studies: A review HHS Public Access. Infect Genet Evol. 2019; 67: 191–209.

40.Rocha Corrêa De Araújo H., Kojin B.B., Capurro M.L. Sex determination and Aedes population control. Parasit Vectors [Electronic resource]. 2018; 11 (suppl 2): 644. DOI: https://doi.org/10.1186/s13071-018-3217-6 (date of access June 28, 2021).

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
Aleksandr V. Gorelov
Academician of the Russian Academy of Sciences, MD, Head of Infection Diseases and Epidemiology Department of the Scientific and Educational Institute of Clinical Medicine named after N.A. Semashko ofRussian University of Medicine, Ministry of Health of the Russian Federation, Professor of the Department of Childhood Diseases, Clinical Institute of Children's Health named after N.F. Filatov, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Deputy Director for Research, Central Research Institute of Epidemiology, Rospotrebnadzor (Moscow, Russian Federation)

Journals of «GEOTAR-Media»