Contemporary methods of laboratory diagnostics of tuberculosis. The detection of the pathogen and determination its drug sensitivity

Abstract

A reliable diagnostic criterion for tuberculosis is the detection of Mycobacterium tuberculosis in the material received from the patient. The article presents bacterioscopic, bacteriological, molecular genetic methods for the diagnosis of M. tuberculosis with the characteristics of each method, taking into account its advantages and disadvantages. For timely detection and successful treatment of tuberculosis, innovative methods for detecting M. tuberculosis and methods for determining drug sensitivity are being introduced.

Keywords:tuberculosis; mycobacterium tuberculosis; microscopic method; bacteriological method; molecular biological methods; determination of drug sensitivity; biochips; real-time PCR

Funding. This work was not funded.

Conflict of interest. The authors state that there is no conflict of interest.

Contribution. Research concept and design – Borodulin B.E; collection and processing of material – Borodulin B.E., Eremenko E.P., Uraksina M.V.; writing texts – on Eremenko E.P., Uraksina M.V., editing: on Eremenko E.P., Borodulina E.A.

For citation: Borodulin B.E., Eremenko E.P., Uraksina M.V., Shubina А.T. Contemporary methods of laboratory diagnostics of tuberculosis. The detection of the pathogen and determination its drug sensitivity. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2022; 11 (4): 106–11. DOI: https://doi.org/10.33029/2305-3496-2022-11-4-106-111

References

1. Ergeshov АЕ. Tuberculosis in the Russian Federation: situation, challenges and perspectives. Vestnik Rossiyskoy akademii meditsinskikh nauk [Annals of the Russian Academy of Medical Sciences]. 2018; 73 (5): 330–7. (in Russian)

2. Vasilyeva I.A., Testov V.V., Sterlikov S.A. Tuberculosis Situation in the Years of the COVID-19 Pandemic – 2020-2021. Tuberkulez i bolezni legkikh [Tuberculosis and Lung Diseases]. 2022; 100 (3): 6–12. (in Russian)

3. Borodulin B.E., Borodulina E.A., Eremenko E.P. Ambulatory phthisiology: textbook. Moscow: KnoRus, 2022: 418 p. ISBN: 9785406092002. (in Russian)

4. Vdoushkina E.S., Borodulina E.A., Kalinkin A.V., Rogozhkin P.V. Tuberculosis in HIV patients in the region with high HIV prevalence. Tuberkulez i bolezni legkikh [Tuberculosis and Lung Diseases]. 2018; 96 (12): 64–5. (in Russian)

5. Mishin V.Yu., Mishina A.V., Levchenko M.V., et al. Tuberculosis and HIV co-infection. Consilium Medicum. 2017; 19 (11): 59–63. (in Russian)

6. Korol’kova A.V., Magomadov Kh.U., Usmanova A.F. Features of laboratory diagnostics in patients with pulmonary tuberculosis. Byulleten’ meditsinskikh Internet-konferentsiy [Bulletin of Medical Internet Conferences]. 2020; 10 (5): 177. (in Russian)

7. Viktorova I.B., Degtyareva S.Yu., Kulabukhova E.I., et al. Detection of Mycobacterium tuberculosis in sputum in patients coinfected with HIV/tuberculosis by various methods (literature review). Zhurnal infektologii [Journal of Infectology]. 2018; 10 (2): 30–8. DOI: https://doi.org/10.22625/2072-6732-2018-10-2-30-38 (in Russian)

8. Sevastyanova E.V., Larionova E.E., Andrievskaya I.Yu. Microscopic detection of mycobacteria by Ziehl-Neelsen staining technique. Vestnik TsNIIT [CTRI Bulletin]. 2019; (2): 81–9. DOI: https://doi.org/10.7868/S2587667819020109 (in Russian)

9. Angra P., Ridderhof J., Tahseen S., еt al. Read the new microscopy handbook: even the Ziehl-Neelsen technique has changed. Int J Tuberc Lung Dis. 2016; 20 (4): 567. DOI: https://doi.org/10.5588/ijtld.16.0009

10. Larionova E.E., Andreevskaya S.N., Smirnova T.G., et al. Methods for the identification of mycobacterium species. Vestnik Tsentral’nogo nauchno-issledovatel’skogo instituta tuberkuleza [CTRI Bulletin]. 2021; (1): 87–98. (in Russian)

11. Sevastyanova E.V., Larionova E.E., Andrievskaya I.Yu., Smirnova T.G. Detection of mycobacteria by culture inoculation. Decontamination of diagnostic samples. Vestnik Tsentral’nogo nauchno-issledovatel’skogo instituta tuberkuleza [CTRI Bulletin]. 2020; (2): 89–99. DOI: https://doi.org/10.7868/S2587667820010119 (in Russian)

12. Larionova E.E., Andrievskaya I.Yu., Andreevskaya S.N., et al. The culture method for mycobacteria studies. Solid growth media. Vestnik Tsentral’nogo nauchno-issledovatel’skogo instituta tuberkuleza [CTRI Bulletin]. 2020; (3): 75–86. DOI: https://doi.org/10.7868/S2587667820030103 (in Russian)

13. Jafari C., Olaru I. D., Daduna F., et al. Rapid diagnosis of pulmonary tuberculosis by combined molecular and immunological methods. Eur Respir J. 2018; 51 (5): 1702189. DOI: https://doi.org/10.1183/13993003.02189-2017

14. Sevastyanova E.V., Chernousova L.N. Modern algorithms of microbiological diagnostics of tuberculosis. Tuberkulez i bolezni legkikh [Tuberculosis and Lung Diseases]. 2018; 96 (7): 11–7. DOI: https://doi.org/10.21292/2075-1230-2018-96-7-11-17 (in Russian)

15. Walzl G., McNerney R., du Plessis N., еt al. Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infect Dis. 2018; 18 (7): 199–210. DOI: https://doi.org/10.1016/S1473-3099(18)30111-7

16. Sevastyanova E.V., Puzanov V.A., Smirnova T.G. Assessment of a set of microbiological and molecular genetic studies for the diagnosis of tuberculosis. Tuberkulez i bolezni legkikh [Tuberculosis and Lung Diseases]. 2015; (1): 35–41. (in Russian)

17. Sevastyanova E.V., Larionova E.E., Andrievskaya I.Yu. Detection of mycobacteria by fluorescent microscopy. Part 1. Specimen preparation and staining. Vestnik Tsentral’nogo nauchno-issledovatel’skogo instituta tuberkuleza [CTRI Bulletin]. 2019; (3): 74–82. DOI: https://doi.org/10.7868/S2587667819030105 (in Russian)

18. Sevastyanova E.V., Larionova E.E., Andrievskaya I.Yu., Smirnova T.G. Detection of mycobacteria by luminescence microscopy. Part 2. Microscopic study of smears. Vestnik Tsentral’nogo nauchno-issledovatel’skogo instituta tuberkuleza [CTRI Bulletin]. 2019; (4): 81–90. DOI: https://doi.org/10.7868/S2587667819040101 (in Russian)

19. Eliseev P.I., Tarasova I.V., Mar’yandyshev A.O. The role of molecular genetic methods in improving the efficiency of diagnosis of drug-resistant tuberculosis in mycobacteria. Tuberkulez i bolezni legkikh [Tuberculosis and Lung Diseases]. 2014; (9): 19. DOI: https://doi.org/10.21292/2075-1230-2014-0-9-19-19 (in Russian)

20. Shi J., Dong W., Ma Y., et al. Genexpert MBT/RIF outperforms mycobacterial culture in detecting Mycobacterium tuberculosis from salivary sputum. Biomed Res Int. 2018; 2018: 1514381. DOI: https://doi.org/10.1155/2018/1514381

21. Yasemin A., Sajjad A., Afzal S., et al. Evaluation of GeneXpert MTB/RIF assay for detection of pulmonary tuberculosis on sputum samples. J Coll Physicians Surg Pak. 2019; 29 (1): 66–9. DOI: https://doi.org/10.29271/jcpsp.2019.01.66

22. Li S., Liu B., Peng M., et al. Diagnostic accuracy of Xpert MTB/RIF for tuberculosis detection in different regions with different endemic burden: a systematic review and metaanalysis. PLoS One. 2017; 12 (7): e0180725. DOI: https://doi.org/10.1371/journal.pone.0180725

23. Chikaonda T., Nguluwe N., Barnett B., et al. Performance of Xpert® MTB/RIF among tuberculosis outpatients in Lilongwe, Malawi. Afr J Lab Med. 2017; 6 (10): 464. DOI: https://doi.org/10.4102/ajlm.v6i2.464

24. Bainomugisa A., Gilpin C., Coulter C., et al. New Xpert MTB/XDR: added value and future in the field. Eur Respir J. 2020; 56: 2003616 DOI: https://doi.org/10.1183/13993003.03616-2020

25. Cao Y., Parmarl H., Gaur R., et al. Xpert MTB/XDR: a ten-color reflex assay suitable for point of care settings to detect isoniazid, fluoroquinolone, and second line injectable drug-resistance directly from Mycobacterium tuberculosis positive sputum. J Clin Microbiol. 2021; 59 (3): e02314-20. DOI: https://doi.org/10.1128/JCM.02314-20

26. Tagliani E., Cabibbe A.M., Miotto P., et al. Diagnostic performance of the new version (v2.0) of GenoType MTBDRsl assay for detection of resistance to fluoroquinolones and second-line injectable drugs: a multicenter study. J Clin Microbiol. 2015; 53 (9): 2961–9. DOI: https://doi.org/10.1128/JCM.01257-15

27. Smirnova T., Ustinova V., Andreevskaya S., et al. Evaluation of a new assay for nontuberculous mycobacteria species identification in diagnostic material and cultures. Tuberculosis. 2021; 130: 102124. DOI: https://doi.org/10.1016/j.tube.2021.102124

28. Ustinova V.V., Smirnova T.G., Varlamov D.A., et al. Detection and differentiation of non-tuberculous mycobacteria and m. tuberculosis complex by real time PCR. Tuberkulez i bolezni legkikh [Tuberculosis and Lung Diseases]. 2016; 94 (9): 80–7. DOI: https://doi.org/10.21292/2075-1230-2016-94-9-80-87 (in Russian)

29. Nguyen T.N.A., Anton-Le Berre V., Banuls A.-L., еt al. Molecular diagnosis of drug-resistant tuberculosis; a literature review. Front Microbiol. 2019; 10: 794. DOI: https://doi.org/10.3389/fmicb.2019.00794

30. Chernousova L.N., Andreevskaya S.N., Smirnova T.G., Larionova E.E. Microbiological diagnosis of multidrug-resistant tuberculosis. Bolezni organov dykhaniya. Prilozhenie k zhurnalu Prilozhenie k zhurnalu «Consilium Medicum» [Diseases of the Respiratory System. Appendix to the Journal «Consilium Medicum»]. 2019; (1): 13–6. DOI: https://doi.org/10.26442/26190079.2019.190490 (in Russian)

31. Ergeshov A., Andreevskaya S.N., Larionova E.E., et al. Prevalence of mutations in Mycobacterium tuberculosis genes coding resistance to isoniazid and rifampicin in tuberculosis patients from different age groups. Molekulyarnaya biologiya [Molecular Biology]. 2017; 51 (4): 595–602. (in Russian)

32. Borodulina E.A., Rogozhkin P.V., Olefirov A.S., et al. Drugresistance of Mycobacterium tuberculosis from surgical material taken from patients with pulmonary tuberculosis. Meditsinskiy al’yans [Medical Alliance]. 2021; 9 (1): 6–10. DOI: https://doi.org/10.36422/23076348-2021-9-1-6-10 (in Russian)

33. Larionova E.E., Andreevskaya S.N., Smirnova T.G., Sevastyanova E.V., Chernousova L.N. Methods for the identification of mycobacterium species. Vestnik Tsentral’nogo nauchno-issledovatel’skogo instituta tuberkuleza [CTRI Bulletin]. 2021; (1): 87–98. (in Russian)

34. Bai Y., Wang Y., Shao C., еt al. GenoType MTBDRplus assay for rapid detection of multidrug resistance in mycobacterium tuberculosis: a meta-analysis. PLoS One. 2016; 11 (3): e0150321. DOI: https://doi.org/10.1371/journal.pone.0150321

35. Tomasicchio M., Theron G., Pietersen E., et al. The diagnostic accuracy of the MTBDRplus and MTBDRsl assays for drug-resistant TB detection when performed on sputum and culture isolates. Sci Rep. 2016; 6: 17850. DOI: https://doi.org/10.1038/srep17850

36. Meaza A., Kebede A., Yaregal Z., et al. Evaluation of genotype MTBDRplus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples. BMC Infect Dis. 2017; 17 (1): 280. DOI: https://doi.org/10.1186/s12879-017

37. Kaminskii G.D., Kudlay D.A., Panova A.E., et al. Doctor’s tactics in the detection, diagnosis and prevention of co-infection with HIV and tuberculosis: a practical guide. Moscow: GEOTAR-Media, 2020: 160 p. ISBN: 978-5-9704-5720-7. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
Aleksandr V. Gorelov
Academician of the Russian Academy of Sciences, MD, Head of Infection Diseases and Epidemiology Department of the Scientific and Educational Institute of Clinical Medicine named after N.A. Semashko ofRussian University of Medicine, Ministry of Health of the Russian Federation, Professor of the Department of Childhood Diseases, Clinical Institute of Children's Health named after N.F. Filatov, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Deputy Director for Research, Central Research Institute of Epidemiology, Rospotrebnadzor (Moscow, Russian Federation)

Journals of «GEOTAR-Media»