Mechanisms of olfactory impairment in COVID-19: a systematic review

Abstract

One of the symptoms of a new coronavirus infection (COVID-19) is a complete or partial violation of the sense of smell.

The aim of the work is to analyze the published results of scientific research on the mechanisms of olfactory impairment in COVID-19.

Material and methods. Research was conducted for publications in Pubmed on the problem of olfactory impairment in COVID-19 using terms indexed by MeSH. The systematic review was compiled in accordance with the checklist Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement (PRISMA).

Results. Publication’s analysis has shown that the existing ideas about conductive anosmia are insufficient to explain the causes of olfactory impairment caused by SARS-CoV-2. It has been established that ACE2 and TMPRSS2 receptors located on the surface of target cells are necessary for the penetration of a new coronavirus. It is known that these receptors are mainly located on the cells of the olfactory epithelium. The main hypothesis of olfactory impairment in COVID-19 is that anosmia/hyposmia is caused by damage not to neuronal cells (as previously assumed), but to the olfactory epithelium. There is no confirmation of the point of view about the damage of SARS-CoV-2 olfactory bulbs and olfactory neurons, since they do not express receptor proteins for the virus on their surface.

Keywords:anosmia; hyposmia; new coronavirus infection; SARS-CoV-2; COVID-19

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

Contribution. Concept – Medeulova A.R.; collection and processing of material – Zhapar K.A., Kusainova D.G.; writing the text – Kusainova D.G.; editing – Medeulova A.R.

For citation: Medeulova A.R., Zhapar K.A., Kussainova D.G. Mechanisms of olfactory impairment in COVID-19: a systematic review. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2022; 11 (2): 8–13. DOI: https://doi.org/10.33029/2305-3496-2022-11-2-8-13

REFERENCES

1. Wang D., Hu B., Hu C., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China [published correction appears in JAMA. 2021; 325 (11): 1113]. JAMA. 2020; 323 (11): 1061–9. DOI: https://doi.org/10.1001/jama.2020.1585

2.Wang M., et al. Clinical diagnosis of 8274 samples with 2019-novel coronavirus in Wuhan. MedRxiv. 2020. URL: http:/www.medrxiv.org/content/10.1101/2020.02.-12.20022327v2

3. Zhang J.J., Dong X., Cao Y.Y., et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020; 75 (7): 1730–41. DOI: https://doi.org/10.1111/all.14238

4. Baj J., Karakuła-Juchnowicz H., Teresiński G., et al. COVID-19: specific and non-specific clinical manifestations and symptoms: the current state of knowledge. J Clin Med. 2020; 9 (6): 1753. DOI: https://doi.org/10.3390/jcm9061753

5. Mi B., Chen L., Xiong Y., Xue H., Zhou W., Liu G. Characteristics and early prognosis of COVID-19 infection in fracture patients. J Bone Joint Surg Am. 2020; 102 (9): 750–8. DOI: https://doi.org/10.2106/JBJS.20.00390

6. Butowt R., von Bartheld C.S. Anosmia in COVID-19: underlying mechanisms and assessment of an olfactory route to brain infection. Neuroscientist. 2021; 27 (6): 582–603. DOI: https://doi.org/10.1177/1073858420956905

7. Spinato G., Fabbris C., Polesel J., et al. Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. JAMA. 2020; 323 (20): 2089–90. DOI: https://doi.org/10.1001/jama.2020.6771

8. Vaira L.A., Salzano G., Deiana G., De Riu G. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope. 2020; 130 (7): 1787. DOI: https://doi.org/10.1002/lary.28692

9. Meng X., Pan Y. COVID-19 and anosmia: the story so far. Ear Nose Throat J. 2021. DOI: https://doi.org/10.1177/01455613211048998

10. Eliezer M., Hautefort C. MRI evaluation of the olfactory clefts in patients with SARS-CoV-2 infection revealed an unexpected mechanism for olfactory function Loss. Acad Radiol. 202; 27 (8): 1191. DOI: https://doi.org/10.1016/j.acra.2020.05.013

11. Bilinska K., Jakubowska P., Von Bartheld C.S., Butowt R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci. 2020; 11 (11): 1555–62. DOI: https://doi.org/10.1021/acschemneuro.0c00210

12. Bryche B., St Albin A., Murri S., et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun. 2020; 89: 579–86. DOI: https://doi.org/10.1016/j.bbi.2020.06.032

13. Singh M., Bansal V., Feschotte C. A single-cell RNA Expression map of human coronavirus entry factors. Cell Rep. 2020; 32 (12): 108175. DOI: https://doi.org/10.1016/j.celrep.2020.108175

14. Nakagawara K., Masaki K., Uwamino Y., et al. Acute onset olfactory/taste disorders are associated with a high viral burden in mild or asymptomatic SARS-CoV-2 infections. Int J Infect Dis. 2020; 99: 19–22. DOI: https://doi.org/10.1016/j.ijid.2020.07.034

15. Bilinska K., Butowt R. Anosmia in COVID-19: a bumpy road to establishing a cellular mechanism. ACS Chem Neurosci. 2020; 11 (15): 2152–5. DOI: https://doi.org/10.1021/acschemneuro.0c00406

16. Lu Y., Li X., Geng D., et al. Cerebral micro-structural changes in COVID-19 patients – an MRI-based 3-month follow-up study. EClinicalMedicine. 2020; 25: 100484. DOI: https://doi.org/10.1016/j.eclinm.2020.100484

17. Kerslake R., Hall M., Randeva H.S., et al. Co-expression of peripheral olfactory receptors with SARS-CoV-2 infection mediators: potential implications beyond loss of smell as a COVID-19 symptom. Int J Mol Med. 2020; 46 (3): 949–56. DOI: https://doi.org/10.3892/ijmm.2020.4646

18. Jalessi M., Barati M., Rohani M., et al. Frequency and outcome of olfactory impairment and sinonasal involvement in hospitalized patients with COVID-19. Neurol Sci. 2020; 41 (9): 2331–8. DOI: https://doi.org/10.1007/s10072-020-04590-4

19. Eliezer M., Hamel A.L., Houdart E., et al. Loss of smell in patients with COVID-19: MRI data reveal a transient edema of the olfactory clefts. Neurology. 2020; 95 (23): e3145–52. DOI: https://doi.org/10.1212/WNL.0000000000010806

20. Brann D.H., Tsukahara T., Weinreb C., et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020; 6 (31): 5801. DOI: https://doi.org/10.1126/sciadv.abc5801

21. Islamoglu Y., Gemcioglu E., Ates I. Objective evaluation of the nasal mucosal secretion in COVID-19 patients with anosmia. Ir J Med Sci. 2021; 190: 889–91. DOI: https://doi.org/10.1007/s11845-020-02405-1

22. Kandemirli S.G., Altundag A., Yildirim D., Tekcan Sanli D.E., Saatci O. Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia. Acad Radiol. 2021; 28 (1): 28–35. DOI: https://doi.org/10.1016/j.acra.2020.10.006

23. Eshraghi A.A., Mirsaeidi M., Davies C., Telischi F.F., Chaudhari N., Mittal R. Potential mechanisms for COVID-19 induced anosmia and dysgeusia. Front Physiol. 2020; 11: 1039. DOI: https://doi.org/10.3389/fphys.2020.01039

24. Butowt R., Bilinska K. SARS-CoV-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci. 2020; 11 (9): 1200–3. DOI: https://doi.org/10.1021/acschemneuro.0c00172

25. Cazzolla A.P., Lovero R., Lo Muzio L., et al. Taste and smell disorders in COVID-19 patients: role of interleukin-6. ACS Chem Neurosci. 2020; 11 (17): 2774–81. DOI: https://doi.org/10.1021/acschemneuro.0c00447

26. Gupta K., Mohanty S.K., Mittal A., et al. The cellular basis of loss of smell in 2019-nCoV-infected individuals. Brief Bioinform. 2021; 22 (2): 873–81. DOI: https://doi.org/10.1093/bib/bbaa168

27. Yildirim D., Kandemirli S.G., Tekcan Sanli D.E., Akinci O., Altundag A. A comparative olfactory MRI, DTI and fMRI study of COVID-19 related anosmia and post viral olfactory dysfunction. Acad Radiol. 2022; 29 (1): 31–41. DOI: https://doi.org/10.1016/j.acra.2021.10.019

28. Brechbühl J., Lopes A.C., Wood D., et al. Age-dependent appearance of SARS-CoV-2 entry sites in mouse chemosensory systems reflects COVID-19 anosmia-ageusia symptoms. Commun Biol. 2021; 4 (1): 880. Epub 2021 Jul 15. DOI: https://doi.org/10.1038/s42003-021-02410-9

29. Sen A. Does serotonin deficiency lead to anosmia, ageusia, dysfunctional chemesthesis and increased severity of illness in COVID-19? Med Hypotheses. 2021; 153: 110627. DOI: https://doi.org/10.1016/j.mehy.2021.110627

30. de Melo G.D., Lazarini F., Levallois S., et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci Transl Med. 2021; 13 (596): eabf8396. DOI: https://doi.org/10.1126/scitranslmed.abf8396

31. Kaye R., Chang C.W.D., Kazahaya K., Brereton J., Denneny J.C. COVID-19 anosmia reporting tool: initial findings. Otolaryngol Head Neck Surg. 2020; 163 (1): 132–4. DOI: https://doi.org/10.1177/0194599820922992

32. Das G., Mukherjee N., Ghosh S. Neurological insights of COVID-19 pandemic. ACS Chem Neurosci. 2020; 11 (9): 1206–9. DOI: https://doi.org/10.1021/acschemneuro.0c00201

33. Doty R.L., Mishra A. Olfaction and its alteration by nasal obstruction, rhinitis, and rhinosinusitis [published correction appears in Laryngoscope 2001; 111 (9): 1673]. Laryngoscope. 2001; 111 (3): 409–23. DOI: https://doi.org/10.1097/00005537-200103000-00008

34. Hummel T., Whitcroft K.L., Andrews P., et al. Position paper on olfactory dysfunction. Rhinol Suppl. 2017; 54 (26): 1–30. DOI: https://doi.org/10.4193/Rhino16.248

35. Eliezer M., Hautefort C., Hamel A., et al. Sudden and complete olfactory loss of function as a possible symptom of COVID-19. JAMA Otolaryngol Head Neck Surg. 2020; 146 (7): 674–5. DOI: https://doi.org/10.1001/jamaoto.2020.0832

36. Gane S.B., Kelly C., Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. 2020; 58 (3): 299–301. DOI: https://doi.org/10.4193/Rhin20.114

37. Lechien J.R., Chiesa-Estomba C.M., De Siati D.R., et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020; 277 (8): 2251–61. DOI: https://doi.org/10.1007/s00405-020-05965-1

38. Printza A., Constantinidis J. The role of self-reported smell and taste disorders in suspected COVID-19. Eur Arch Otorhinolaryngol. 2020; 277 (9): 2625–30. DOI: https://doi.org/10.1007/s00405-020-06069-6

39. Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020; 11 (7): 995–8. DOI: https://doi.org/10.1021/acschemneuro.0c00122

40. Meinhardt J., Radke J., Dittmayer C., et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021; 24: 168–75. DOI: https://doi.org/10.1038/s41593-020-00758-5

41. Sia S.F., YalLM., Chin A.W.H., et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020; 583: 834–8. DOI: https://doi.org/10.1038/s41586-020-2342-5

42. Brann J.H., Firestein S.J. A lifetime of neurogenesis in the olfactory system. Front Neurosci. 2014; 8: 182. DOI: https://doi.org/10.3389/fnins.2014.00182

43. Schwob J.E. Neural regeneration and the peripheral olfactory system. Anat Rec. 2002; 269 (1): 33–49. DOI: https://doi.org/10.1002/ar.10047

44. Dell’Era V., Farri F., Garzaro G., Gatto M., Aluffi Valletti P., Garzaro M. Smell and taste disorders during COVID-19 outbreak: cross-sectional study on 355 patients. Head Neck. 2020; 42 (7): 1591–6. DOI: https://doi.org/10.1002/hed.26288

45. Briguglio M., Giorgino R., Dell’Osso B., et al. Consequences for the elderly after COVID-19 isolation: FEaR (Frail Elderly amid Restrictions). Front Psychol. 2020; 11: 56–9. DOI: https://doi.org/10.3389/fpsyg.2020.565052

46. Dos Santos M.F., Devalle S., Aran V., et al. Neuromechanisms of SARS-CoV-2: a review. Front Neuroanat. 2020; 14: 37. DOI: https://doi.org/10.3389/fnana.2020.00037

47. Jia H., Rochefort N.L., Chen X., Konnerth A. Dendritic organization of sensory input to cortical neurons in vivo. Nature. 2010; 464 (7293): 1307–12. DOI: https://doi.org/10.1038/nature08947

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
Aleksandr V. Gorelov
Academician of the Russian Academy of Sciences, MD, Head of Infection Diseases and Epidemiology Department of the Scientific and Educational Institute of Clinical Medicine named after N.A. Semashko ofRussian University of Medicine, Ministry of Health of the Russian Federation, Professor of the Department of Childhood Diseases, Clinical Institute of Children's Health named after N.F. Filatov, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Deputy Director for Research, Central Research Institute of Epidemiology, Rospotrebnadzor (Moscow, Russian Federation)

Journals of «GEOTAR-Media»