Listeriosis and the COVID-19 pandemic

Abstract

Listeriosis is a saprozoonotic infection that occurs when eating foods contaminated with Listeria. Invasive forms of listeriosis can have extremely severe consequences. Respiratory viral diseases predispose to the occurrence of combined viral-bacterial infections. With a mixed infection of listeriosis and COVID-19, a severe course of the disease is observed, which has a serious prognosis.

The aim of the study was to analyze the frequency of various variants of invasive listeriosis and their outcomes in the period before the COVID-19 pandemic and against the background of its development, as well as to determine the genetic diversity of L. monocytogenes isolates.

Material and methods. We analyzed 55 cases of invasive listeriosis in patients observed in 20182021 in various medical organizations in Moscow. The diagnosis was established on the basis of epidemiological, clinical and laboratory data, listeriosis was confirmed by bacteriological and molecular genetic methods, COVID-19 was confirmed by the detection of SARS-CoV-2 RNA in an oropharyngeal swab using real-time RT-PCR, as well as computed tomography of the lungs.

Results. During the current COVID-19 pandemic (2020-2021), the incidence of listeriosis in pregnant women and invasive listeriosis occurring in the form of sepsis and/or lesions of the central nervous system did not differ significantly from similar indicators registered in 2018-2019. Listeria sepsis and/or meningitis/ meningoencephalitis in association with severe SARS-CoV-2 novel coronavirus infection are at high risk of death. During the years of the COVID-19 pandemic, the diversity and range of L. monocytogenes genotypes in invasive Listeriosis changed, new genotypes appeared that were not previously characteristic of the Russian Federation.

Conclusion. The likelihood of developing listeriosis sepsis and/or meningitis/meningoencephalitis against the background of a severe course of COVID-19, and a high risk of an adverse outcome, require increased awareness of medical workers in the field of diagnosis and treatment of invasive listeriosis in order to conduct the earliest and most adequate antibiotic therapy.

Keywords:Listeria monocytogenes, listeriosis; invasive forms; pregnant women; meningitis; sepsis; COVID-19 pandemic; multilocus sequence typing; genotype

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

Contribution. Supervision - Tartakovsky I.S., Yushchuk N.D.; conceptualization and clinical study design - Klimova E.A., Karet-kina G.N.; conceptualization of molecular genetic research - Voronina O.L.; microbiological research - Melkumyan A.R., Karpova T.I., Pokidysheva A.Yu., Pronina T.V., Orlova O.E., Burmistrova E.N.; molecular genetic research - Ryzhova N.N., Kunda M.S., Aksenova E.I., Kutuzova A.V.; consultative and methodological support for working with archival data - Smetanina S.V.; working with archived data and statistical analysis Posukhovsky E.A., Syrochev A.A.; data curation - Klimova E.A., Karetkina G.N., Voronina O.L.; writing - original draft preparation Klimova E.A., Karetkina G.N., Voronina O.L.; writing - review and editing Klimova E.A., Voronina O.L.

For citation: Klimova E.A., Voronina O.L., Karetkina G.N., Posukhovsky E.A., Ryzhova N.N., Kunda M.S., Aksenova E.I., Kutuzova A.V., Karpova T.I., Tartakovsky I.S., Pokidysheva A.Yu., Pronina T.V., Melkumyan A.R., Orlova O.E., Burmistrova E.N., Syrochev A.A., Smetanina S.V., Yushchuk N.D. Listeriosis and the COVID-19 pandemic. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2022; 11 (1): 102-12. DOI: https://doi.org/10.33029/2305-3496-2022-11-1-102-112

References

1. Scallan E., Hoekstra R.M., Angulo F.J., et al. Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis. 2011; 17 (1): 7-15. DOI: https://doi.org/10.3201/eid1701.p11101

2. Decree of the Chief State Sanitary Doctor of the Russian Federation dated January 28, 2021 N 4 “On approval of sanitary rules and norms SanPiN 3.3686-21 “Sanitary and epidemiological requirements for the prevention of infectious diseases". URL: https:// docs.cntd.ru/document/ 573660140 (date of access: November 13, 2021). (in Russian)

3. de Noordhout C.M., Devleesschauwer B., Angulo F.J., et al. The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect Dis. 2014; 14 (11): 1073-82. DOI: https://doi.org/10.1016/S1473-3099(14)70870-9; PMID: 25241232.

4. Charlier C., Disson O., Lecuit M. Maternal-neonatal listeriosis. Virulence. 2020; 11 (1): 391-7. DOI: https://doi.org/10.1080/21505594.2020.1759287

5. Elinav H., Hershko-Klement A., Valinsky L. et al. Israeli Listeria Study Group. Pregnancy-associated listeriosis: clinical characteristics and geospatial analysis of a 10-year period in Israel. Clin Infect Dis. 2014; 59 (7): 953-61. DOI: https://doi.org/10.1093/cid/ciu504; PMID: 24973315.

6. Lamont R.F., Sobel J., Mazaki-Tovi S., et al. Listeriosis in human pregnancy: a systematic review. J Perinat Med. 2011; 39 (3): 227-36. DOI: https://doi.org/10.1515/jpm.2011.035; PMID: 21517700.

7. Craig A.M., Dotters-Katz S.., Kuller J.A., et al. Listeriosis in pregnancy: a review. Obstet. Gynecol. Surv. 2019; 74 (6): 362-368. DOI: https://doi.org/10.1097/OGX.0000000000000683; PMID: 31216045.

8. Shishov A.S., Klimova E.A., Karetkina G.N., et al. Antibacterial therapy of lysterious lesions of the central nervous system in real clinical practice. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2020; 9 (2): 77-83. DOI: https://doi.org/10.33029/2305-3496-2020-9-2-77-83 (in Russian)

9. Voronina O.L., Kunda M.S., Ryzhova N.N., et al. Listeriosis: genotyping as a key for identification a possible source of infection. Kliniceskaa Mikrobiologia i Antimi-krobnaa Himioterapia [Clinical Microbiology and Antimicrobial Chemotherapy]. 2019; 21 (4): 261-73. DOI: https://doi.org/10.36488/cmac.2019A261273 (in Russian)

10. Voronina O.L., Kunda M.S., Ryzhova N.N., et al. Regularities of the ubiquitous polyhostal microorganisms selection by the example of three taxa. Molekulyarnaya biologiya [Molecular Biology]. 2015, 49 (3): 380-90. DOI: https://doi.org/10.1134/S0026893315030176 (in Russian)

11. Voronina O.L., Tartakovsky I.S., Yuyshchuk N.D., et al. Analysis of sporadic cases of invasivelisteriosis in a metropolis. Journal of microbiology, epidemiology and immunobiology [Zhurnal Mikrobiologii, Ёpidemiologii i Immunobiologii]. 2020; 97 (6): 547-55. DOI: https://doi.org/10.36233/0372-9311-2020-97-6-3 (in Russian)

12. WHO. Listeriosis. Available at: www.who.int/newsroom/factsheets/detail/listeriosis

13. CDC. Listeria (Listeriosis). Available at: https://www.cdc.gov/listeria/risk.html

14. Vaillant V., de Valk H., Baron E., et al. Foodborne infections in France. Foodborne Pathog Dis. 2005; 2 (3): 221-32. DOI: https://doi.org/10.1089/fpd.2005.2.221; PMID: 16156703.

15. Charlier C., Perrodeau E., Leclercq A., et al. M. s. group. Clinical features and prognostic factors of listeriosis: The MONALISA national prospective cohort study. Lancet Infect Dis. 2017; 17 (5): 510-9. DOI: https://doi.org/10.1016/S1473-3099(16)30521-7

16. Wadhwa Desai R., Smith M.A. Pregnancy-related listeriosis. Birth Defects Res. 2017; 109 (5): 324-35. DOI: https://doi.org/10.1002/bdr2.1012

17. Madjunkov M., Chaudhry S., Ito S. Listeriosis during pregnancy. Arch Gynecol Obstet. 2017; 296 (2): 143-52. DOI: https://doi.org/10.1007/s00404-017-4401-1

18. Wang Z., Tao X., Liu S., et al. An update review on Listeria infection in pregnancy. Infect Drug Resist. 2021; 14: 1967-78. DOI: https://doi.org/10.2147/IDR.S313675

19. Cimolai N. A comprehensive analysis of maternal and newborn disease and related control for COVID-19. SN Compr Clin Med. 2021: 1-23. DOI: https://doi.org/10.1007/s42399-021-00836-0

20. Bengoechea J.A., Bamford C.G. SARS-CoV-2, bacterial co-infections, and AMR: the deadly trio in COVID-19? EMBO Mol Med. 2020; 12 (7): e12560. DOI: https://doi.org/10.15252/emmm.202012560

21. Morris D.E., Cleary D.W., Clarke S.C. Secondary bacterial infections associated with influenza pandemics. Front Microbiol. 2017; 8: 1041. DOI: https://doi.org/10.3389/fmicb.2017.01041

22. Chen X., Liao B., Cheng L., et al. The microbial coinfection in COVID-19. Appl Microbiol Biotechnol. 2020; 104 (18): 7777-85. DOI: https://doi.org/10.1007/s00253-020-10814-6

23. Bortell N., Aguilera E.R., Lenz L.L. Pulmonary insults exacerbate susceptibility to oral Listeria monocytogenes infection through the production of IL-10 by NK cells. PLoS Pathog. 2021; 17 (4): e1009531. DOI: https://doi.org/10.1371/journal.ppat.1009531

24. Mirzaei R., Goodarzi P., Asadi M., et al. Bacterial co-infections with SARS-CoV-2. IUBMB Life. 2020; 72 (10): 2097-111. DOI: https://doi.org/10.1002/iub.2356

25. Foldvari-Nagy L., Schnabel T., Dornyei G., et al. On the role of bacterial metal-loproteases in COVID-19 associated cytokine storm. Cell Commun Signal. 2021; 19 (1): 7. DOI: https://doi.org/10.1186/s12964-020-00699-3

26. Wang L., He W., Yu X., et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020; 80 (6): 639-45. DOI: https://doi.org/10.1016/j.jinf.2020.03.019

27. Drevets D.A., Bronze M.S. Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunol Med Microbiol. 2008; 53 (2): 151-65. DOI: https://doi.org/10.1111/j.1574-695X.2008.00404.x

28. Tay M.Z., Poh C.M., Renia L., et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020; 20 (6): 363-74. DOI: https://doi.org/10.1038/s41577-020-0311-8

29. Alcock J., Masters A. Cytokine storms, evolution and COVID-19. Evol Med Public Health. 2021; 9 (1): 83-92. DOI: https://doi.org/10.1093/emph/eoab005

30. Meira F., Moreno-Garcia E., Linares L., et al. Impact of inflammatory response modifiers on the incidence of hospital-acquired infections in patients with COVID-19. Infect Dis Ther. 2021; 1-12. DOI: https://doi.org/10.1007/s40121-021-00477-9

31. Du P., Geng J., Wang F., et al. Role of IL-6 inhibitor in treatment of COVID-19-related cytokine release syndrome. Int J Med Sci. 2021; 18 (6): 1356-62. DOI: https://doi.org/10.7150/ijms.53564

32. Cellina M., Fetoni V., Baron P., et al. Listeria meningoencephalitis in a patient with rheumatoid arthritis on anti-Interleukin 6 receptor antibody tocilizumab. J Clin Rheumatol. 2015; 21 (6): 330. DOI: https://doi.org/10.1097/RHU.0000000000000287

33. Bodro M., Paterson D.L. Listeriosis in patients receiving biologic therapies. Eur J Clin Microbiol Infect Dis. 2013; 32 (9): 1225-30. DOI: https://doi.org/10.1007/s10096-013-1873-1

34. Somers E.C., Eschenauer G.A., Troost J.P., et al. Tocilizumab for treatment of mechanically ventilated patients with COVID-19. Clin Infect Dis. 2021; 73 (2): e445-54. DOI: https://doi.org/10.1093/cid/ciaa954

35. Kimmig L.M., Wu D., Gold M., et al. IL-6 inhibition in critically ill COVID-19 patients is associated with increased secondary infections. Front Med (Lausanne). 2020; 7: 583897. DOI: https://doi.org/10.3389/fmed.2020.583897

36. Komura T., Ohta H., Nakai R., et al. Cytomegalovirus reactivation induced acute hepatitis and gastric erosions in a patient with rheumatoid arthritis under treatment with an anti-IL-6 receptor antibody, tocilizumab. Intern Med. 2016; 55 (14): 1923-7. DOI: https://doi.org/10.2169/internalmedicine.55.5981

37. Watanabe E., Sugawara H., Yamashita T., et al. Successful tocilizumab therapy for macrophage activation syndrome associated with adult-onset still’s disease: a case-based review. Case Rep Med. 2016; 2016: 5656320. DOI: https://doi.org/10.1155/2016/5656320

38. Bradshaw M.J., Cho T.A., Chow F.C. Central nervous system infections associated with immunosuppressive therapy for rheumatic disease. Rheum Dis Clin North Am. 2017; 43 (4): 607-19. DOI: https://doi.org/10.1016Zj.rdc.2017.06.009

39. Gudiol C., Dura-Miralles X., Aguilar-Company J., et al. Co-infections and superinfections complicating COVID-19 in cancer patients: a multicentre, international study. J Infect. 2021; 83 (3): 306-13. DOI: https://doi.org/10.1016/jjinf.2021.07.014

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
Aleksandr V. Gorelov
Academician of the Russian Academy of Sciences, MD, Head of Infection Diseases and Epidemiology Department of the Scientific and Educational Institute of Clinical Medicine named after N.A. Semashko ofRussian University of Medicine, Ministry of Health of the Russian Federation, Professor of the Department of Childhood Diseases, Clinical Institute of Children's Health named after N.F. Filatov, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Deputy Director for Research, Central Research Institute of Epidemiology, Rospotrebnadzor (Moscow, Russian Federation)

Journals of «GEOTAR-Media»