The therapeutics, based on virus specific antibodies, for special prophylactic and current of COVID-19

Abstract

The analyses of effectiveness of medical means of protection based on virus specific antibodies, intended for special prophylactic and current of COVID-19 is conducted.

The plasma of patients, obtained from the blood takes the leading part among these prepares. It is concluded, that convalescents plasma, containing virus neutralizing antibodies, may be used for emergency prevention or in the early stages of the disease.

A risk group, that primarily needs in such drugs for special prophylactics, is medical workers.

The other prepares, based on virus specific antibodies, including purified prepares of monoclonal antibodies, that may have certain advantages to convalescent's plasma due to their safety and high activity, due to complexity of their production and presumably high cost are unlikely to be available in the near future for mass use in the practice of medicine.

The use of convalescents plasma for the prevention and treatment of COVID-19.can be based on the experience of their application in specialized medical centers and summarizing data from randomized clinical trials.

Keywords:SARS-CoV-2 virus, COVID-19, coronaviruses, virus specific antibodies, prevention, treatment of viral infectious diseases

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

Contribution. Collection and synthesis of data on developed antibody-containing prepares against COVID-19, writing of article - Sizikova T.E.; collection and synthesis of data on trials of antibody-containing prepares against COVID-19 - Lebedinskaya E.V.; collection and synthesis of data on the possibility of side effects by used of antibody-containing prepares against COVID-19 - Lebedev V.N.; the determination of the purpose of the conducted research, preparation of the final version of the article -Borisevich S.V.

For citation: Sizikova T.E., Lebedinskaya E.V., Lebedev V.N., Borisevich S.V. The therapeutics, based on virus specific antibodies, for special prophylactic and current of COVID-19. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2021; 10 (4): 98-104. DOI: https://doi.org/10.33029/2305-3496-2021-10-4-98-104 (in Russian)

REFERENCES

1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., et al. A novel coro-navirus from patients with pneumonia in China. 2019. N Engl J Med. 2020; 382 (8): 727-33. DOI: http://doi.org/10.1056/NEJMoa2001017

2. Sohag A.A.M., Hannan M.A., Rahman S., Hossain M., Hasan M., Khan M.K., et al. Revisiting potential druggable targets against SARS-CoV-2 and repurposing therapeutics under preclinical study and clinical trials: a comprehensive review. Drug Dev Res. 2020. DOI: http://doi.org/10.1002/ddr.21709

3. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10 223): 497-506. DOI: http://doi.org/10.1016/S0140-6736(20)30183-5

4. Klasse PJ. Neutralization of virus infectivity by antibodies: old problems in new perspectives. Adv Biol. 2014; 2014: 157895. DOI: http://doi.org/10.1155/2014/157895

5. Coughlin M.M., Prabhakar B.S. Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action, and therapeutic potential. Rev Med Virol. 2012; 22 (1): 2-17. DOI: http://doi.org/10.1002/rmv.706

6 Hung I.F., To K.K., Lee C.K., Lee K.L., Chan K., Yan W.W., et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis. 2011; 52 (4): 447-56. DOI: http://doi.org/10.1093/cid/ciq106

7. Sahr F., Ansumana R., Massaquoi T.A., Idriss B.R., Sesay F.R., Lamin J.M., et al. Evaluation of convalescent whole blood for treating Ebola Virus Disease in Freetown, Sierra Leone. J Infect 2017; 74 (3): 302-9. DOI: http://doi.org/10.1016/jjinf.2016.11.009

8. Uyeki T.M., Mehta A.K., Davey R.T. Jr, Liddell A.M., Wolf T., Vetter P., et al. Clinical management of Ebola virus disease in the United States and Europe. N Engl J Med. 2016; 374 (7): 636-46. DOI: http://doi.org/10.1056/NEJMoa1504874

9. Zhang J.S., Chen J.T., Liu Y.X., Zhang Z.S., Gao H., Liu Y., et al. A serological survey on neutralizing antibody titer of SARS convalescent sera. J Med Virol. 2005; 77 (2): 147-50. DOI: http://doi.org/10.1002/jmv.20431

10. Cheng Y., Wong R., Soo Y.O., Wong W.S., Lee C.K., Ng M.H., et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005; 24 (1): 44-6. DOI: http://doi.org/10.1007/s10096-004-1271-9

11. Casadevall A., Pirofski L.A. The convalescent sera option for containing COVID-19. J Clin Invest 2020; 130 (4): 1545-8. DOI: http://doi.org/10.1172/JCI138003

12. Beigel J.H., Voell J., Kumar P., Raviprakash K., Wu H., Jiao J.A., et al. Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study. Lancet Infect Dis. 2018; 18 (4): 410-8. DOI: http://doi.org/10.1016/S1473-3099(18)30002-1

13. Ashour H.M., Elkhatib W.F., Rahman M.M., Elshabrawy H.A. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens. 2020; 9 (3): 186. DOI: http://doi.org/10.3390/pathogens9030186

14. Forster P., Forster L., Renfrew C., Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci USA. 2020; 117 (17): 9241-3. DOI: http://doi.org/10.1073/pnas.2004999117

15. Siu Y.L., Teoh K.T., Lo J., Chan C.M., Kien F., Escriou N., et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol. 2008; 82 (22): 11 318-30. DOI: http://doi.org/10.1128/JVI.01052-08

16. Anthony S.J., Johnson C.K., Greig D.J., Kramer S., Che X., Wells H., et al. Global patterns in coronavirus diversity. Virus Evol. 2017; 3 (1): vex012. DOI: http://doi.org/10.1093/ve/vex012

17. Xu X., Chen P., Wang J., Feng J., Zhou H., Li X., et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020; 63 (3): 457-60. DOI: http://doi.org/10.1007/s11427-020-1637-5

18. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020; 94 (7): e00127-20. DOI: http://doi.org/10.1128/JVI.00127-20

19. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579 (7798): 270-3. DOI: http://doi.org/10.1038/s41586-020-2012-7

20. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367 (6483): 1260-3. DOI: http://doi.org/10.1126/science.abb2507

21. Liu L., Wei Q., Nishiura K., Peng J., Wang H., Midkiff C., et al. Spa-tiotemporal interplay of severe acute respiratory syndrome coronavirus and respiratory mucosal cells drives viral dissemination in rhesus macaques. Mucosal Immunol. 2016; 9 (4): 1089-101. DOI: http://doi.org/10.1038/mi.2015.127

22. Tseng C.T., Perrone L.A., Zhu H., Makino S., Peters C.J. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J Immunol. 2005; 174 (12): 7977-85. DOI: http://doi.org/10.4049/jimmunol.174.12.7977

23. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 1061-9. DOI: http://doi.org/10.1001/jama.2020.1585

24. Chen L., Liu H.G., Liu W., Liu J., Liu K., Shang J., et al. [Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia]. Zhonghua Jie He He Hu Xi Za Zhi. 2020; 43 (3): 203-8. DOI: http://doi.org/10.3760/cma.j.issn.1001-0939.2020.03.013 (in Chinese)

25. Li C., Xu X. Host Immune Responses to SARS Coronavirus in Humans. Molecular Biology of the SARS-Coronavirus. Heidelberg : Springer, 2010.

26. Arabi Y.M., Hajeer A.H., Luke T., Raviprakash K., Balkhy H., Johani S., Al-Dawood A., et al. Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia. Emerg Infect Dis. 2016; 22 (9): 1554-61. DOI: http://doi.org/10.3201/eid2209.151164

27. Roitt I., Brostoff J., Male D. Immunology. 5th ed., London etc., 1998. [Ройт А. Основы иммунологии : пер. с англ. Москва : Мир, 2000. 592 с.]

28. Teixeira da Silva J.A. Convalescent plasma: a possible treatment of COVID-19 in India. Med J Armed Forces India. 2020; 76 (2): 236-7. DOI: http://doi.org/10.1016/j.mjafi.2020.04.006

29. Casadevall A., Pirofski L.A. Antibody-mediated regulation of cellular immunity and the inflammatory response. Trends Immunol. 2003; 24 (9): 474-8. DOI: http://doi.org/10.1016/s1471-4906(03)00228-x

30. Casadevall A., Scharff M.D. Serum therapy revisited: animal models of infection and development of passive antibody therapy. An-timicrob Agents Chemother. 1994; 38 (8): 1695-702. DOI: http://doi.org/10.1128/aac.38.8.1695

31. Gajic O., Rana R., Winters J.L., Yilmaz M., Mendez J.L., Rickman O.B., et al. Transfusion-related acute lung injury in the critically ill: prospective nested case-control study. Am J Respir Crit Care Med. 2007; 176 (9): 886-91. DOI: http://doi.org/10.1164/rccm.200702-271OC

32. Wan Y., Shang J., Sun S., Tai W., Chen J., Geng Q., et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol. 2020; 94 (5): e02015-19. DOI: http://doi.org/10.1128/JVI.02015-19

33. Crowe J.E. Jr, Firestone C.Y., Murphy B.R. Passively acquired antibodies suppress humoral but not cell-mediated immunity in mice immunized with live attenuated respiratory syncytial virus vaccines. J Immunol. 2001; 167 (7): 3910-8. DOI: http://doi.org/10.4049/jimmunol.167.7.3910

34. Zhou G., Zhao Q. Perspectives on therapeutic neutralizing antibodies against the novel coronavirus SARS-CoV-2. Int J Biol Sci. 2020; 16 (10): 1718-23. DOI: http://doi.org/10.7150/ijbs.45123

35. Zhang M.Y., Choudhry V., Xiao X., Dimitrov D.S. Human monoclonal antibodies to the S glycoprotein and related proteins as potential therapeutics for SARS. Curr Opin Mol Ther. 2005; 7 (2): 151-6.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
Aleksandr V. Gorelov
Academician of the Russian Academy of Sciences, MD, Head of Infection Diseases and Epidemiology Department of the Scientific and Educational Institute of Clinical Medicine named after N.A. Semashko ofRussian University of Medicine, Ministry of Health of the Russian Federation, Professor of the Department of Childhood Diseases, Clinical Institute of Children's Health named after N.F. Filatov, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Deputy Director for Research, Central Research Institute of Epidemiology, Rospotrebnadzor (Moscow, Russian Federation)

Journals of «GEOTAR-Media»