Analysis data of mechanism of drugs recommended for the treatment of COVID-19

Abstract

The purpose of this review is to analyze the data of scientific articles on medicines indicated as etiotropic and approved for outpatient use within the framework of temporary methodological recommendations for the prevention, diagnosis and treatment of a new coronavirus infection in the Russian Federation.

Material and methods. A systematic search of literature was carried out on the databases MEDLINE, PubMed, Cochrane Library, GHL, OpenGrey, ICTRP and ClinicalTrials.gov until April 2021. 37 779 articles were indexed in the ScienceDirect database (keywords: SARS-CoV-2), of which (pre-press) – 2023 (2), 2022 (69), published in 2021 (19 642 articles ), in 2020 (12,966 articles). The search was carried out using the following keywords: Favipiravir – 1622 publications, Umifenovir – 387 publications, which indicates a high interest in the problem of new coronavirus infection in general and its drug (etiotropic) therapy, in particular.

Results. The conducted analysis demonstrates that drugs based on favipiravir have a larger number of studies proving its effectiveness in different clinical groups of patients with COVID-19, while it is important to note the breadth of the geography of published works, which allows us to speak about the reproducibility of the results. Drugs from this group have a direct antiviral effect with the studied target of action (i.e., most likely, the principle of etiotropic therapy is implemented).

Conclusion. The search for new drugs, as well as the expansion of information about the mechanisms of action of previously known molecules, is the basis for the development of COVID-19 therapy regimens with maximum efficiency and safety.

Keywords:SARS-CoV-2, antiviral therapy, favipiravir, umifenovir, interferon alfa-2b

Contribution. Analysis of literary sources and writing of the article – Radaeva O.A.; search for literary sources with systematization, writing the text – Kostina Yu.A.

Funding. The study was not sponsored.

Conflict of interest. The authors declare that there is no conflict of interest.

For citation: Radaeva O.A., Kostina Yu.A. Analysis data of mechanism of drugs recommended for the treatment of COVID-19. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2021; 10 (3): 106–17. DOI: https:// doi.org/10.33029/2305-3496-2021-10-3-106-117 (in Russian)



1. Sweeney D.A., Benson C.A., Kalil A.C. Convalescent plasma and coronavirus disease 2019: Time for reassessment. Crit Care Med. 2021; 49 (7): 1182–6. DOI: https://doi.org/10.1097/CCM.0000000000005068

2. Ongoing living update of COVID-19 therapeutic options: Summary of evidence. Rapid Review, 27 May, 2021. Pan American Health Organization, 241 p. Available at: https:.iris.paho.org/bitstream/handle/10665.2/52719/ PAHOIMSEIHCOVID-1921018_eng.pdf?sequence=45&isAllowed=y

3. Rutgers A., Westerweel P.E., van der Holt B., et al. Timely administration of tocilizumab improves survival of hospitalized COVID-19 patients. SSRN Journal [Internet]. 2021 [cited 2021 07 12]; Available from: https:. www.ssrn.com/abstract=3834311

4. Joshi S., Parkar J., Ansari A., et al. Role of Favipiravir in the treatment of COVID-19. Int J Infect Dis. 2021; 102: 501–8. DOI: https://doi. org/10.1016/j.ijid.2020.10.069

5. V’kovski P., Kratzel A., Steiner S., Stalder H., Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021; 19 (3): 155–70. DOI: https://doi.org/10.1038/s41579-020-00468-6

6. Murgolo N., Therien A.G., Howell B., et al. SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. PLoS Pathog. 2021; 17 (2): e1009225. Available at: https:.journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009225 DOI: https:.doi.org/10.1371/journal.ppat.1009225

7. Furuta Y., Komeno T., Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017; 93 (7): 449–63. DOI: https://doi.org/10.2183/pjab.93.027

8. Anil K.S., Bhaskar B.L. Preliminary investigation of drug impurities associated with the anti-influenza drug Favipiravir – An insilico approach. Comput Theor Chem. 2021; 1204: 113375–88. DOI: https://doi. org/10.1016/j.comptc.2021.113375

9. Gao Y., Yan L., Huang Y., et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 2020; 368 (6492): 779–82. DOI: https://doi.org/ 10.1126/science.abb7498

10. Shannon A., Selisko B., Le N., Huchting J., et al. Favipiravir strikes the SARS-CoV-2 at its Achilles heel, the RNA polymerase. bioRxiv [Preprint]. 2020. Available at: https:.www.biorxiv.org/content/10.1101/2020.05.15.098731v1 DOI: https://doi.org/10.1101/2020.05.15.098731

11. Balykova L.A., Govorov A.V., Vasiliev A.O., et al.Characteristics of COVID-19 and possibilities of early causal therapy. Results of Favipiravir use in clinical practice. Infektsionnye bolezni [Infectious Diseases]. 2020; 18 (3): 30–40. DOI: https://doi.org/10.20953/1729-9225-2020-3-30-40 (in Russian)

12. Heiser K., McLean P.F., Davis C.T., et al. Identification of potential treatments for COVID-19 through artificial intelligence-enabled phenomic analysis of human cells infected with SARS-CoV-2. bioRxiv. 2020. Available at: https:.www.biorxiv.org/content/10.1101/2020.04.21.054387v1.full. pdf DOI: https://doi.org/10.1101/2020.04.21.054387

13. Mirabelli C., Wotring J.W., Zhang C.J., et al. Morphological Cell Profiling of SARS-CoV-2 Infection Identifies Drug Repurposing Candidates for COVID-19. bioRxiv. 2020. Available at: https:.www.biorxiv. org/content/10.1101/2020.05.27.117184v4 DOI: https://doi.org/10.1101/2020.05.27.117184

14. Hoffmann M., Kleine-Weber H., Pohlmann S. A. Multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020; 78 (4): 779–84. DOI: https://doi.org/10.1016/j.molcel.2020.04.022

15. Anti-influenza drug Avigan® tablet meets primary endpoint in phase III clinical trial in Japan for COVID-19 patients. 2020. https:.www. fujifilm.com/jp/en/news/hq/5451

16. Doi Y., Hibino M., Hase R., et al. A prospective, randomized, openlabel trial of early versus late Favipiravir therapy in hospitalized patients with COVID-19. Antimicrob Agents Chemother. 2020; 6 (12): e01897–20. Available at: https:.journals.asm.org/doi/10.1128/AAC.01897-20?url_ ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed DOI: https://doi.org/10.1128/AAC.01897-20

17. Cai Q., Yang M., Liu D., et al. Experimental treatment with Favipiravir for COVID-19: An open-label control study. Engineering (Beijing). 2020; 6 (10): 1192–8. DOI: https://doi.org/10.1016/j.eng.2020.03.007

18. Kocayiğit H., Özmen Süner K., Tomak Y., et al. Observational study of the effects of Favipiravir vs Lopinavir/Ritonavir on clinical outcomes in critically Ill patients with COVID-19. J Clin Pharm Ther. 2021; 46 (2): 454–9. DOI: https://doi.org/ 10.1111/jcpt.13305

19. Ghasemnejad-Berenji M., Pashapour S. Favipiravir and COVID-19: A simplified summary. Drug Res (Stuttg). 2021; 71 (3): 166–70. DOI: https://doi.org/10.1055/a-1296-7935

20. Goyal A., Cardozo-Ojeda E.F., Schiffer J.T. Potency and timing of antiviral therapy as determinants of duration of SARS-CoV-2 shedding and intensity of inflammatory response. Sci Adv. 2020; 6 (47): eabc7112. Available at: https:.advances.sciencemag.org/content/6/47/eabc7112 DOI: https://doi.org/10.1126/sciadv.abc7112.

21. Chen C., Huang J., Cheng Z., Wu J. Favipiravir versus arbidol for COVID-19: A randomized clinical trial. medRxiv 2020; Available at: https:. www.researchgate.net/publication/340071952_Favipiravir_versus_Arbidol_for_COVID-19_A_Randomized_Clinical_Trial

22. Balykova L.А., Granovskaya M.V., Zaslavskaya K.Ya., et al. New possibilities for targeted antiviral therapy for COVID-19. Results of a multicenter clinical study of the efficacy and safety of using the drug Areplivir. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2020, №3 (34). C. 16-24. DOI: https:.doi. org/10.33029/2305-3496-2020-9-3-16-29 (in Russian)

23. Rattanaumpawan P., Jirajariyavej S., Lerdlamyong K., Palavutitotai N., Saiyarin J. Real-world experience with favipiravir for treatment of COVID-19 in Thailand: results from a multicenter observational study. medRxiv. 2020. Available at: https:.www.medrxiv.org/content/10.1101/2020.06.24.20133249v3.full.pdf DOI: https://doi.org/ 10.1101/2020.06.24.20133249.

24. Clinical trial registry-India. https:.nam03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.ctri.nic.in%2FClinicaltrials%2Fpdf_& amp;data=04%7C01%7CZ.french%40elsevier.com%7Cb03f57a6430f4d-4c99ce08d8936b3608%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637421435975715693%7CUnknown%7CTWFpbGZsb3d8eyJ WIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=lDUTAkPeWFQTjcEzJDoHvEvdH1HdgeVQIDdBbeSM Dz4%3D&reserved=0 generate . php?trialid=43504&EncHid=&modi d=&compid=%27,%2743504det%27/2020 (accessed on 22 August 2021)

25. Arias A., Thorne L., Goodfellow I. Favipiravir elicits antiviral mutagenesis during virus replication in vivo. eLife. 2014; 3: e03679. Available at: https:.elifesciences.org/articles/03679 DOI: https://doi.org/10.7554/ eLife.03679

26. Vankadari N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int J Antimicrob Agents. 2020; 56 (2): 105998. DOI: https://doi.org/10.1016/j. ijantimicag.2020.105998

27. Haid S., Pietschmann T., Pécheur E.I. Low pH-dependent hepatitis C virus membrane fusion depends on E2 integrity, target lipid composition, and density of virus particles. J Biol Chem. 2009; 284: 17657–67.

28. Pécheur E.I., Lavillette D., Alcaras F., et al. Biochemical mechanism of hepatitis C virus inhibition by the broad-spectrum antiviral arbidol . Biochemistry. 2007; 46: 6050–9.

29. Teissier E., Penin F., Pécheur E.I. Targeting cell entry of enveloped viruses as an antiviral strategy . Molecules. 2010; 16: 221–50.

30. Sun Y., He X., Qiu F., et al. Pharmacokinetics of single and multiple oral doses of arbidol in healthy Chinese volunteers. Int J Clin Pharmacol Ther. 2013; 51: 423–32.

31. Khamitov R.A., Loginova S.Ya., Shchukina V.N., et al. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Voprosy virusologii [Problems of Virology]. 2008; 53 (4): 9–13. (in Russian)

32. Leneva I.A., Pshenichnaya N.Yu., Bulgakova V.A. Umifenovir and coronavirus infections: a review of research results and clinical. Terapevticheskii arkhiv [Therapeutic Archive]. 2020; 92 (11): 91–7. (in Russian). DOI: https://doi.org/10.26442/00403660.2020.11.000713

33. Wang Z., Yang B., Li Q., Wen L., Zhang R. Clinical Features of 69 Cases With Coronavirus Disease 2019 in Wuhan, China . Clin Infect Dis. 2020; 71 (15): 769–77. DOI: https://doi.org/ 10.1093/cid/ciaa272

34. Alavi Darazam I, Shokouhi S, Mardani M., et al. Umifenovir in hospitalized moderate to severe COVID-19 patients: A randomized clinical trial. Int Immunopharmacol. 2021; 99: 107969. DOI: https://doi.org/ 10.1016/j. intimp.2021.107969

35. Lian N., Xie H., Lin S., et al. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clin Microbiol Infect. 2020; 20: 30234–2. DOI: https://doi. org/10.1016/j.cmi.2020.04.026

36. Lan X., Shao C., Zeng X., Wu Z., Xu Y. Lopinavir-ritonavir alone or combined with arbidol in the treatment of 73 hospitalized patients with COVID-19: A pilot retrospective study. Int J Clin Pharmacol Ther. 2021; 59 (5): 378–85. DOI: https://doi.org/10.5414/CP203861

37. Li Y., Xie Z., Lin W., et al. An exploratory randomized controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). medRxiv. 2020. Available at: https:.www.medrxiv.org/content/10.1101/2020.03.19.20038984v2

38. Huang D., Yu H., Wang T., et al. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis . J Med Virol. 2021; 93 (1): 481–90. DOI: https://doi.org/10.1002/ jmv.26256

39. Deng L., Li C., Zeng Q., et al. Arbidol combined with LPV/r versus LPV/r alone against corona virus disease 2019: a retrospective cohort study. J Infect. 2020; 6: 43–50. DOI: https://doi.org/10.1016/j.jinf.2020.03.002

40. Burtseva E.I., Shevchenko E.S., Leneva I.A., et al. Rimantadine and arbidol sensitivity of influenza viruses that caused epidemic morbidity rise in Russia in the 2004–2005 season [Russian]. Voprosy virusologii [Problems of Virology]. 2007; 52: 24–9. (in Russian)

41. Leneva I.A., Russell R.J., Boriskin Y.S., Hay A.J. Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of Arbidol . Antiviral Res. 2009; 81: 132–40.

42. Calabrese L.H., Lenfant T., Calabrese C. Interferon therapy for COVID-19 and emerging infections: prospects and concerns. Cleve Clin J Med. 2020; 4: 25–30 DOI: https://doi.org/10.3949/ccjm.87a.ccc066

43. Lokugamage K.G., Schindewolf C., Menachery V.D. SARS-CoV-2 sensitive to type I interferon pretreatment. BioRxiv. 2020. Available at: https:.www.biorxiv.org/content/10.1101/2020.03.07.982264v4 DOI: https:.doi.org/10.1101/2020.03.07.982264

44. Lee J.S., Shin E-C. The type I interferon response in COVID-19: implications for treatment. Nat Rev Immunol. 2020; 20 (10): 585–6. DOI: https://doi.org/10.1038/s41577-020-00429-3

45. Melekhina E. V., Nikolaeva S. V., Usenko D. V. et al. On the use of type I interferons for the treatment of COVID-19. COVID19-PREPRINTS.MICROBE. RU. 2020. DOI: https:.doi.org/10.21055/preprints-3111812 (in Russian)

46. Davoudi-Monfared E., Rahmani H., Khalili H., et al. A randomized clinical trial of the efficacy and safety of interferon beta-1a in treatment of severe COVID-19 . Antimicrob Agents Chemother. 2020; 64. Available at: https:.journals.asm.org/doi/10.1128/AAC.01061-20?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed& DOI: https://doi.org/10.1128/AAC.01061-20

47. Shen K.L., Yang Y.H. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J Pediatr. 2020; 16 (3): 219–21. DOI: https:.doi.org/10.1007/s12519-020-00344-6

48. Sheahan T.P., Sims A.C., Leist S.R., et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020; 11 (1) Available at: https:. www.nature.com/articles/s41467-019-13940-6 https:.doi.org/10.1038/ s41467-019-13940-6

49. Menachery V.D., Yount B.L., Josset L., et al. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2’-O-methyltransferase activity. J. Virol. 2014; 88: 4251–64. DOI: https:.doi. org/10.1128/jvi.03571-13

50. Thiel V., Weber F. Interferon and cytokine responses to SARS-coronavirus infection. . Cytokine Growth Factor Rev. 2008; 19: 121–32. DOI: https:.doi.org/10.1016/j.cytogfr.2008.01.001

51. Zhou Q., Chen V., Shannon C.P., et al. Interferon-alpha2b treatment for COVID-19 . Front Immunol. 2020; 11: 1061. DOI: https://doi. org/10.3389/fimmu.2020.01061

52. Meng Z., Wang T., Li C., et al. An experimental trial of recombinant human interferon alpha nasal drops to prevent coronavirus disease 2019 in medical staff in an epidemic area. medRxiv, 2020. Available at: https:.www. researchgate.net/publication/340722472_An_experimental_trial_of_recombinant_human_interferon_alpha_nasal_drops_to_prevent_coronavirus_disease_2019_in_medical_staff_in_an_epidemic_area DOI: https:// doi.org/10.1101/2020.04.11.20061473

53. Malyavin A.G., Krikheli N.I., Rogova I.V., et al. Therapy of patients with COVID-19: results of evaluating the effectiveness and safety of including Ingavirin® in the recommended standard therapy regimen in real clinical practice. Terapiya [Therapy]. 2021, (5): 22–32. DOI: https://dx.doi. org/10.18565/therapy.2021.5.22-32 (in Russian)

54. Aschacher T., Krokhin A., Kuznetsova I., et al. Effect of the antiviral drug ingavirin® (imidazolyl ethanamide pentandioic acid) on the interferon status of cells under conditions of viral infection. Epidemiologiya i infektsionnye bolezni [Epidemiology and Infectious Diseases]. 2016; (4): 196–205. (in Russian)

55. Temporary guidelines of the Ministry of Health of the Sverdlovsk region “On the use of the drug Triazavirin for the treatment and post-exposure prophylaxis of a new coronavirus infection – COVID-19”. Yekaterinburg, 2020. (in Russian)

56. Valiulin S.V., Onischuk A.A., Dubtsov S.N., Baklanov A.M., An’kov S.V., Plokhotnichenko M.E., et al. Aerosol inhalation delivery of Triazavirin in mice: outlooks for advanced therapy against novel viral infections. J Pharm Sci. 2021; 110 (3): 1316–22. DOI: https://doi.org/10.1016/j.xphs.2020.11.016

57. Kasyanenko K.V., Kozlov K.V., Maltsev O.V., Lapikov I.I., Gordienko V.V., Sharabhanov V.V., et al. Evaluation of the effectiveness of Riamilovir in the complex therapy of patients with COVID-19. Terapevticheskii arkhiv [Therapeutic Archive]. 2021; 93 (3): 290–4.DOI: 10.26442/00403660.2021.03.200719)

58. Wu X., Yu K., Wang Y., et al. Efficacy and safety of Triazavirin therapy for coronavirus disease 2019: A pilot randomized controlled trial. Engineering (Beijing). 2020; 6 (10): 1185–91. DOI: https://doi.org10.1016/j.eng.2020.08.011

59. Expert board resolution: possibilities of ethiotropic therapy for respiratory infections caused by RNA viruses. 2021; (5): 193–5. DOI: https://dx.doi.org/10.18565/therapy.2021.5.193-195 (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
Aleksandr V. Gorelov
Academician of the Russian Academy of Sciences, MD, Head of Infection Diseases and Epidemiology Department of the Scientific and Educational Institute of Clinical Medicine named after N.A. Semashko ofRussian University of Medicine, Ministry of Health of the Russian Federation, Professor of the Department of Childhood Diseases, Clinical Institute of Children's Health named after N.F. Filatov, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Deputy Director for Research, Central Research Institute of Epidemiology, Rospotrebnadzor (Moscow, Russian Federation)

Journals of «GEOTAR-Media»