Application of Geographic Information Systems in epidemiological surveillance for West Nile Fever and other arbovirus infections at the modern stage

Abstract

The article focuses on the use of Geographic Information Systems (GIS) for spatial epidemiological analysis and differentiation of natural focal territories according to the risk of infection with arbovirus infections in order to increase the effectiveness of the complex of preventive measures. The prospects of the use of GIS for the development of scientifically based forecasts of complications of the epidemiological situation on arbovirus infections relevant to the international community are substantiated. The results of introducing modern information technologies into the system of epidemiological surveillance of arbovirus infectious diseases in the territory of the Russian Federation are presented with the aim of improving the information-analytical and prognostic-modeling support of preventive (anti-epidemic) measures and making managerial decisions.

Keywords:arbovirus infections, West Nile Fever, Geographic Information Systems, epidemiological surveillance, preventive measures

Funding. The study has no sponsor support.

Conflict of interest. Authors declare no conflict of interest.

Contribution. The authors declare equal contributions to the writing of the article.

For citation: Zhukov K.V., Udovichenko S.K., Nikitin D.N., Viktorov D.V., Toporkov A.V. Application of Geographic Information Systems in epidemiological surveillance for West Nile Fever and other arbovirus infections at the modern stage. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2021; 10 (2): 16-24. DOI: https://doi.org/10.33029/2305-3496-2021-10-2-16-24 (in Russian)

References

1. Franklinos L.H.V., Jones K.E., Redding D.W., Abubakar I. The effect of global change on mosquito-borne disease. Lancet Infect Dis. 2019; 19 (9): e302-12. DOI: https://doi.org/10.1016/S1473-3099(19)30161-6

2. Weaver S.C., Charlier C., Vasilakis N., Lecuit M. Zika, Chikungunya, and other emerging vector-borne viral diseases. Annu Rev Med. 2018; 69: 395-408. DOI: https://doi.org/10.1146/annurev-med-050715-105122.

3. Musso D., Gubler D.J. Zika virus. Clin Microbiol Rev. 2016; 29: 487524. DOI: https://doi.org/10.1128/CMR.00072-15

4. Dengue and severe dengue. URL: https://www.who.int/ru/news-room/fact-sheets/detail/dengue-and-severe-dengue (date of access June 14, 2020) (in Russian)

5. Dengue in the WHO European Region. URL: http://www.euro.who.int/__data/assets/pdf_file/0009/246852/Factsheet-Dengue-Rus.pdf (date of access June 24, 2020) (in Russian)

6. Pokrovsky V.I., Platonov A.E., Simonova E.G., Platonov O.V., Maleev V.V. Zika fever. Epidemiologiya i infektsionnye bolezni. Aktual’nye voprosy [Epidemiology and Infectious Diseases. Actual Issues]. 2016; (2): 35-42. (in Russian)

7. WHO statement on the first meeting of the International Health Regulations (2005) (IHR 2005) Emergency Committee on Zika virus and observed increase in neurological disorders and neonatal malformations. URL: https://www.who.int/ru/news-room/detail/01-02-2016-who-statement-on-the-first-meeting-of-the-international-health-regulations-(2005)-(ihr-2005)-emergency-committee-on-zika-virus-and-observed-increase-in-neurological-disorders-and-neonatal-malformations (data access June 4, 2020) (in Russian)

8. Hennessey M., Fischer M., Staples J.E. Zika virus spreads to new areas - region of the Americas, May 2015-January 2016. MMWR Morb Mortal Wkly Rep. 2016; 65: 55-8. DOI: https://doi.org/10.15585/mmwr.mm6503e1

9. Vu D.M., Jungkind D., LaBeaud A.D. Chikungunya virus. Clin Lab Med. 2017; 37 (2): 371-82. DOI: https://doi.org/10.1016/j.cll.2017.01.008

10. Nunes M.R., Faria N.R., de Vasconcelos J.M., Golding N., et al. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Medicine. 2015; 13: 102. DOI: https://doi.org/10.1186/s12916-015-0348-x

11. Hadfield J., Brito A.F., Swetnam D.M., Vogels C.B.F., et al. Twenty years of West Nile virus spread and evolution in the Americas visualized by Nextstrain. PLoS Pathog. 2019; 15 (10): e1008042. DOI: https://doi.org/10.1371/journal.ppat.1008042

12. Putintseva E.V., Alekseychik I.O., Chesnokova S.N., Udovichenko S.K., et al. Results of the West Nile fever agent monitoring in the Russian Federation in 2019 and the forecast of epidemic situation development in 2020. Problemy osobo opasnykh infektsiy [Problems of Particularly Dangerous Infections]. 2019; (1): 17-25. DOI: https://doi.org/10.21055/0370-1069-2019-1-17-254 (in Russian)

13. Toporkov A.V. (ed.). West Nile Fever. Volgograd: Volga-Press, 2017: 304 p. (in Russian)

14. Vodyanitskaya S.Yu., Sud’ina L.V., Logvin F.V., Vodop’yanov A.S., et al. GIS-technologies in the advancement of epidemiological surveillance for anthrax in the Rostov region. Epidemiologiya i infektsionnye bolezni [Epidemiology and Infectious Diseases]. 2016; 21 (3): 152-6. (in Russian)

15. Kuznetsov A.A., Porshakov A.M., Matrosov A.N., Lopatin A.A. Application of GIS technologies for determination of boundaries and area of epizootic regions within natural plague foci. Problemy osobo opasnykh infektsiy [Problems of Particularly Dangerous Infections]. 2017; (4): 41-4. DOI: https://doi.org/10.21055/0370-1069-2017-4-41-44 (in Russian)

16. Anan’ev Yu.S. Geographical Information System. Study guides. Tomsk: Izd-vo TPU, 2003: 70 p. (in Russian)

17. Rodriguez-Morales A.J., Bedoya-Arias J.E., Ramfrez-Jaramillo V., Montoya-Arias C.P., et al. Using geographic information system (GIS) to mapping and assess changes in transmission patterns of chikungunya fever in municipalities of the Coffee-Triangle region of Colombia during 2014-2015 outbreak: Implications for travel advice. Travel Med Infect Dis. 2016; 14 (1): 62-5. DOI: https://doi.org/10.1016/jrtmaid.2015.06.009

18. Rodriguez-Morales A.J., Galindo-Marquez M.L., Garcfa-Loaiza C.J., Sabogal-Roman J.A., et al. Mapping Zika virus infection using geographical information systems in Tolima, Colombia, 2015-2016. F1000Res. 2016; 5: 568. DOI: https://doi.org/10.12688/f1000research.8436.1

19. Centre for Disease Prevention and Control, CDC. ArboNET [Electronic resource]. URL: https://www.cdc.gov/arbonet/Maps/ADB_Dis-eases_Map/index.html (date of access August 30, 2020)

20. Jones R.C., Weaver K.N., Smith S., Blanco C., et al. Use of the vector index and geographic information system to prospectively inform West Nile virus interventions. J Am Mosq Control Assoc. 2011; 27 (3): 315-9. DOI: https://doi.org/10.2987/10-6098.1

21. Ozdenerol E., Taff G.N., Akkus C. Exploring the spatio-temporal dynamics of reservoir hosts, vectors, and human hosts of west Nile virus: a review of the recent literature. Int J Environ Res Public Health. 2013; 10 (11): 5399-432. DOI: https://doi.org/10.3390/ijerph10115399

22. Pan American Health Organization. Dengue [Electronic resource]. URL: http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en.html (date of access May 25, 2020)

23. European Centre for Disease Prevention and Control, ECDC. Weekly updates: 2019 West Nile virus transmission season [Electronic resource]. URL: http://ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc (date of access July 22, 2020)

24. LaBeaud A.D., Gorman A.-M., Koonce J., Kippes C., et al. Rapid GIS-based profiling of West Nile virus transmission: defining environmental factors associated with an urban-suburban outbreak in Northeast Ohio, USA. NIH Public Access. 2008; 2 (2): 215-25. DOI: https://doi.org/10.4081/gh.2008.245

25. Valiakos G., Papaspyropoulos K., Giannakopoulos A., Birtsas P, et al. Use of wild bird surveillance, human case data and GIS spatial analysis for predicting spatial distributions of West Nile virus in Greece. PLoS One. 2014; 9 (5): e96935. DOI: https://doi.org/10.1371/journal.pone.0096935

26. Moore M. J. Geographic analysis of West Nile virus in the Upper Minnesota River Valley: a GIS and multi-temporal remote sensing approach. Theses, dissertations, and other capstone projects. 2014: 134 p.

27. Zou L., Miller S.N., Schmidtmann E.T. A GIS tool to estimate West Nile virus risk based on a Degree-Day model. Environ Monit Assess. 2006; 129 (1-3): 413-20. DOI: https://doi.org/10.1007/s10661-006-9373-834

28. Samy A.M., Thomas S.M., Wahed A.A., Cohoon K.P., Peterson A.T. Mapping the global geographic potential of Zika virus spread. Mem Inst Os-waldo Cruz. 2016; 111 (9): 559-60. DOI: https://doi.org/10.1590/0074-02760160149

29. Ong J., Liu X., Rajarethinam J., Yheng Kok S., et al. Mapping dengue risk in Singapore using Random Forest. PLoS Negl Trop. Dis. 2018; 12 (6): 1-12. DOI: https://doi.org/10.1371/journal.pntd.0006587

30. Epidemiological atlas of the Volga Federal District. FBUN «Nizhny Novgorod Research Institute of Epidemiology and Microbiology named after Academician I.N. Blokhina» Rospotrebnadzor. URL: http://epid-atlas.nniiem.ru/index.html (date of access August 07, 2020) (in Russian)

31. Sycheva K.A., Shvets O.G., Medyanik I.M., Zhurenkova O.B., Fedorova M.V. Results of Aedes albopictus (SKUSE, 1895) range monitoring in Krasnodar region in 2019. Meditsinskaya parazitologiya i parazitarnye bolezni [Medical Parasitology and Parasitic Diseases]. 2020; (2): 3-8. DOI: https://doi.org/10.33092/0025-8326mp2020.2.03-08

32. Popova A.Yu., Kulichenko A.N., Maletskaya O.V., Manin E.A., et al. Using geographic information system ZikaMap to control the situation with vectors for dangerous arboviruses during the preparation and hosting the 2018 FIFA World Cup in Sochi. Zdorov’e naseleniya i sreda obitaniya [Public Health and Life Environment]. 2019; 4 (313): 4-7. (in Russian)

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
Aleksandr V. Gorelov
Academician of the Russian Academy of Sciences, MD, Head of Infection Diseases and Epidemiology Department of the Scientific and Educational Institute of Clinical Medicine named after N.A. Semashko ofRussian University of Medicine, Ministry of Health of the Russian Federation, Professor of the Department of Childhood Diseases, Clinical Institute of Children's Health named after N.F. Filatov, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Deputy Director for Research, Central Research Institute of Epidemiology, Rospotrebnadzor (Moscow, Russian Federation)

Journals of «GEOTAR-Media»