Extracellular vesicles (exosomes) and parasitic infections. Part 2. The role of exosomal microvesicular structures in parasitic diseases

Abstract

When the host and parasite interact, exosomal microvesicular structures (EMVS) mediates mutual communication, transfers virulence factors and other effector molecules, and regulates the expression of various pathogen and host genes. A better understanding of the mechanisms of formation and functioning of EMVS can induce new ideas for further development of molecular diagnostic biomarkers, vaccines, and therapeutic methods for parasitic, and perhaps other disease.

Keywords:parasites, exosomal microvesicular structures, parasitic pathology, diagnosis, immunotherapy, vaccination

Funding. The study was not sponsored.

Conflict of interest. The authors declare that there is no conflict of interest.

Contribution. Research concept - Shenderov B.A., research design - Kuznetsova K.Yu., Sergiev V.P.; material collection - Shen-derov B.A., Sergiev V.P.; material processing - Kuznetsova K.Yu.; text writing - Shenderov B.A., Kuznetsova K.Yu.; editing - all authors.

For citation: Shenderov B.A., Kuznetsova K.Yu., Sergiyev V.P. Extracellular vesicles (exosomes) and parasitic infections. Part 2. The role of exosomal microvesicular structures in parasitic diseases. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2021; 10 (1): 66-74. DOI: https://doi.org/10.33029/2305-3496-2021-10-1-66-74 (in Russian)

Литература/References

1. Riaz R, Cheng G. Exosome-like vesicles of helminths: implication of pathogenesis and vaccine development. Ann Trans Med. 2017; 5 (7): 175. https://atm.amegroups.com/article/view/13953/14561

2. Khosravi M., Mirsamadi E.S., Mirjalali H., Zali M.R. Isolation and functions of extracellular vesicles derived from parasites: the promise of a new era in immunotherapy, vaccination, and diagnosis. Int J Nanomed. 2020; 15: 2957-69. DOI: https://doi.org/10.2147/IJN.S250993

3. Hessvik N.P., Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018; 75: 193-208. DOI: https://doi.org/10.1007/s00018-017-2595-9

4. Silveira J.F., Abrahamsohn P.A., Colli W. Plasma membrane vesicles isolated from epimastigote forms of Trypanosoma cruzi. Biochim Bio-phys Acta Biomembr. 1979; 550 (2): 222-32.

5. Wu Z., Wang L., Li J., Wang L., Wu Z., Sun X. Extracellular vesicle-mediated communication within host-parasite interactions. Front Immunol. 2019; 9: 3066. DOI: https://doi.org/10.3389/fimmu.2018.03066

6. Skotland T., Sandvig K., Llorente A. Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res. 2017; 66: 30-41. DOI: https://pubmed.ncbi.nlm.nih.gov/28342835/

7. Hartjes T.A., Mytnyk S., Jenster G.W., van Steijn V., van Royen M.E. Extracellular vesicle quantification and characterization: common methods and approaches. Bioengineering. 2019; 6: 7. DOI: https://doi.org/10.3390/bioengineering6010007

8. Malloci M., Perdomo L., Veerasamy M., Andriantsitohaina R., Si-mard G., Martinez M.C. Extracellular vesicles: mechanisms in human health and disease. Antioxid Redox Signal. 2019; 30: 813-56. DOI: https://doi.org/10.1089/ars.2017.7265

9. Nawaz M., Malik M.I., Hameed M., Zhou L. Research progress on the composition and function of parasite-derived exosomes. Acta Trop. 2019; 196: 30-6. DOI: https://doi.org/10.1016/J.actatropica.2019.05.004

10. Yanez-Mo M., Siljander P.R.-M., Andreu Z., Zavec A.B., Borras F.E., et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015; 4: 27066. DOI: https://pubmed.ncbi.nlm.nih.gov/25979354/

11. Mekonnen G.G., Pearson M., Loukas A., Sotillo J. Extracellular vesicles from parasitic helminths and their potential utility as vaccines. Expert Rev Vaccines. 2018; 17: 197-205. DOI: https://doi.org/10.1080/14760584.2018.1431125

12. Vidal M. Exosomes: revisiting their role as «garbage bags». Traffic. 2019; 20: 815-28. DOI: https://doi.org/10.1111/tra.12687

13. Woith E., Fuhrmann G., Melzig M.F. Extracellular vesicles - connecting kingdoms. Int J Mol Sci. 2019; 2019: 205695. DOI: https://doi.org/10.3390/ijms20225695

14. Sedgwick A.E., D’Souza-Schorey C. The biology of extracellular microvesicles. Traffic. 2018; 19 (5): 319-27. DOI: https://doi.org/10.1111/tra.12558

15. Tian J., Casella G., Zhang Y., Rostami A., Li X. Potential roles of extracellular vesicles in the pathophysiology, diagnosis, and treatment of autoimmune diseases. Int J Biol Sci. 2020; 16 (4): 620-32. DOI: https://doi.org/10.7150/ijbs.39629

16. Devhare P.B., Ray R.B. Extracellular vesicles: Novel mediator for cell to cell communications in liver pathogenesis. Mol Aspects Med. 2018; 60: 115-22. DOI: https://doi.org/10.1016/j.mam.2017.11.001

17. Record M., Silvente-Poirot M., Wakelam M.J.O. Extracellular vesicles: lipids as key components of their biogenesis and functions. J Lipid Res. 2018; 2018: 5913161323. DOI: https://doi.org/10.1194/jlr.E086173

18. Kuipers M.E., Hokke C.H., Smits H.H., Hoene E.N.M.N. Pathogen-derived extracellular vesicle-associated molecules that affect the host immune system: an overview. Front Microbiol. 2018; 9: 2182. DOI: https://doi.org/10.3389/fmicb.2018.02182

19. Wang Y., Yuan W., Kimber M., Lu M., Dong L. Rapid differentiation of host and parasitic exosome vesicles using microfluidic photonic crystal biosnsor. ACS Sens. 2018; 3 (9): 1616-21. DOI: https://doi.org/10.1021/acssensors.8b00360

20. Buck A.H., Coakley G., Simbari F., McSorley H.J., Quintana J.F., Le Bihan T., et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun. 2014; 5: 5488. DOI: https://doi.org/10.1038/ncomms6488

21. Atayde V.D., Lira A., Chaparro V., et al. Explotation of the Leish-mania exosomal pathway by Leishmania RNA virus 1. Nat Microbiol. 2019; 4 (4). DOI: https://doi.org/10.1038/s41564-018-0352-y

22. Zhang W., Jiang X., Bao J., Wang Y., Liu H., Tang L. Exosomes in pathogen infections: a bridge to deliver molecules and link functions. Front Immunol. 2018; 9: 90. DOI: https://doi.org/10.3389/fimmu.2018.00090

23. Montaner S., Galiano A., Trelis M., Martin-Jaular L. Del Portillo H.A., Bernal D., et al. The role of extracellular vesicles in modulating the host immune response during parasitic infections. Front Immunol. 2014; 5: 433. DOI: https://doi.org/10.3389/fimmu.2014.00433

24. Bayer-Santos E., Aguilar-Bonavides C., Rodrigues S.P., Cordero E.M., Marques A.F., Varela-Ramirez A., et al. Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res. 2013; 12 (2): 883-97. DOI: https://doi.org/10.1021/pr300947g

25. Twu O., de Miguel N., Lustig G., Stevens G.C., Vashisht A.A., Wohlschlegel J.A., et al. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate hostratioparasite interactions. PLoS Pathog. 2013; 9 (7): e1003482. DOI: https://doi.org/10.1371/journal.ppat.1003482

26. Mandacaru S.C., Queiroz R.M.L., Alborghetti M.R., de Oliveira L.S., de Lima C.M.R., Bastos I.M.D., et al. Exoproteome profiling of Trypanosoma cruzi during amastigogenesis early stages. PLoS One. 2019; 14 (11): e0225386. DOI: https://doi.org/10.1371/journal.pone.0225386

27. Gazzinelli-Guimarars P.H., Nutman T.B. Helminth parasites and immune regulation. F1000 Research. 2018; 7: 1685. DOI: https://doi.org/10.12688/f1000research.15596.1

28. Marti M., Johnson PJ. Emerging roles for extracellular vesicles in parasitic infections. Curr Opin Microbiol. 2016; 32: 66-70. DOI: https://doi.org/10.1016/j.mib.2016.04.008

29. Chow F.W.-N., Kotsovoulos G., Ovando-Vazquez C., Neophytou K., Bermudez-Barrientos J.R., et al. Secretion of an Argonaute protein by a parasitic nematode and the evolution of its siRNA guides. Nucleic Acids Res. 2019; 47 (7).

30. Campos F.M., Franklin B.S., Teixeira-Carvalho A., Filho A.L., de Paula S.C., Fontes C.J., et al. Augmented plasma microparticles during acute Plasmodium vivax infection. Malaria J. 2010; 9: 327. DOI: https://doi.org/10.1186/1475-2875-9-327

31. Silverman J.M., Clos J., Horakova E., Wang A.Y., Wiesgigl M., Kelly I., et al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol. 2010; 185 (9): 5011-22. DOI: https://pubmed.ncbi.nlm.nih.gov/20881185/

32. Buschiazzo A., Muia R., Larrieux N., Pitcovsky T., Mucci J., Campe-tella O. Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structure/function studies towards the rational design of inhibitors. PLoS Pathog. 2012; 8: e1002474. DOI: https://doi.org/10.1371/journal.ppat.1002474

33. Pech-Canul A.C., Monteon V., Solis-Oviedo R.L. A brief view of the surface membrane proteins from Trypanosoma cruzi. J Parasitol Res. 2017; 2017: 3751403. DOI: https://doi.org/10.1155/2017/3751403

34. Moreira L., Serrano .F, Osuna A. Extracellular vesicles of Trypanosoma cruzi tissue-culture cell-derived trypomastigotes: Induction of physiological changes in non-parasitized culture cells. PLoS Negl Trop Dis. 2019; 13 (2): e0007163. DOI: https://doi.org/10.1371/journal.pntd.0007163

35. Olmos-Ortiz L.M., Barajas-Mendiola M.A., Barrios-Rodiles M., Castellano L.E., Arias-Negrete S., Cuellar-Mata P., et al. Trichomonas vaginalis exosome-like vesicles modify the cytokine profile and reduce inflammation in parasite infected mice. Parasite Immunol. 2017; 39: e12426. DOI: https://doi.org/10.1111/pim.12426

36. Bautista-Lopez N.L., Ndao M., Camargo F.V., et al. Characterization and diagnostic application of Trypanosoma cruzi trypomastigote excreted-secreted antigens shed in extracellular vesicles released from infected mammalian cells. J Clin Microbiol. 2017; 55 (3): 744-58. DOI: https://doi.org/10.1128/jcm.01649-16

37. Wowk P.F., Zardo M.L., Miot H.T., Goldenberg S., Carvalho P.C., Morking P.A. Proteomic profiling of extracellular vesicles secreted from Toxoplasma gondii. Proteomics. 2017; 17: 1600477. DOI: https://doi.org/10.1002/pmic.201600477

38. Li Y., Liu Y., Xiu F.,Wang .J, Cong H., He S., et al. Characterization of exosomes derived from Toxoplasma gondii and their functions in modulating immune responses. Int J Nanomed. 2018; 13: 467-77. DOI: https://doi.org/10.2147/IJN.S151110

39. Samoil V., Dagenais M., Ganapathy V., Jerry Aldridge J., Glebov A., Ardim A., Paula Ribeiro P. Vesicle-based secretion in schistosomes: analysis of protein and microRNA (miRNA) content of exosome-like vesicles derived from Schistosoma mansoni. Sci Rep. 2018; 8: 3286. DOI: https://doi.org/10.1038/s41598-018-21587-4

40. Ibsen S.D., Wright J., Lewis J.M., Kim S., Ko S.-Y., et al. Rapid isolation and detection of exosomes and associated biomarkers from plasma. ACS Nano. 2017; 11 (7): 6641-51. DOI: https://pubmed.ncbi.nlm.nih.gov/28671449/

41. Toledo R., Bernal M.D., Marcilla A. Proteomics of foodborne trematodes. J Proteomics. 2011; 74: 1485-503. DOI: https://doi.org/10.1016/j.jprot.2011.03.029

42. Wang L., Yu Z., Wan S., Wu F., Chen W., Zhang B., et al. Exosomes derived from dendritic cells treated with Schistosoma japonicum soluble egg antigen attenuate DSS-induced colitis. Front Pharmacol. 2017; 8: 651. DOI: https://doi.org/10.3389/fphar.2017.00651

43. Meningher T., Lerman G., Regev-Rudzki N., Gold D., Ben-Dov I.Z., Sidi Y., et al. Schistosomal MicroRNAs isolated from extracellular vesicles in sera of infected patients: a new tool for diagnosis and follow-up of human schistosomiasis. J Infect Dis. 2017; 215: 378-86. DOI: https://doi.org/10.1093/infdis/jiw539

44. Fromm B., Ovchinnikov V., Hoye E., Bernal D., Hackenberg M., Marcilla A. On the presence and immunoregulatory functions of extracellular mi-croRNAs in the trematode Fasciola hepatica. Parasite Immunol. 2017; 39: e12399. DOI: https://doi.org/10.1111/pim.12399

45. Cwiklinski K., de la Torre-Escudero E., Trelis M., Bernal D., Dufresne P., Robinson J., et al. The Extracellular vesicles of the helminth pathogen, Fasciola hepatica: biogenesis pathways and cargo molecules involved in parasite pathogenesis. Mol Cell Proteomics. 2015; 14: 3258-73. DOI: https://pubmed.ncbi.nlm.nih.gov/26486420/

46. Roig J., Saiz M.L., Galiano A., et al. Extracellular vesicles from the helminth Fasciola hepatica prevent DSS-induced acute ulcerative colitis in a T-lymphocyte independent mode. Front Microbiol. 2018; 9: 1036. DOI: https://doi.org/10.3389/fmicb.2018.01036

47. Smallwood T.B., Giacomin P.R., Loukas A., et al. Helminth immu-nomodulation in autoimmune disease. Front Immunol. 2017; 8: 453. DOI: https://doi.org/10.3389/fimmu.2017.00453

48. Maizels R.M. Parasitic helminth infections and the control of human allergic and autoimmune disorders. Clin Microbiol Infect. 2016; 22: 481-6. DOI: https://doi.org/10.1016/j.cmi.2016.04.024

49. Wang W., Zhou X., Cui F., Shi C., Wang Y., Men Y., et al. Proteomic analysis of exosomes derived from patients sera infected with Echinococcus granulosus. Korean J Parasitol. 2019; 57 (5): 489-97. DOI: https://doi.org/10.3347/kjp.2019.57.5.489

50. Siles-Lucas M. Sanchez-Ovejero C., Gonzalez-Sanchez M., Gonzalez E., Falcon-Perez J.M., Boufana B., et al. Isolation and characterization of exosomes derived from fertile sheep hydatid cysts. Vet Parasitol. 2017; 236: 22-33. DOI: https://doi.org/10.1016/j.vetpar.2017.01.022

51. Zhou X., Wang W., Cui F., Shi C., Ma Y., Yu Y., et al. Extracellular vesicles derived from Echinococcus granulosus hydatid cyst fluid from patients: isolation, characterization and evaluation of immunomodulatory functions on T cells. Int J Parazitol. 2019; 49 (13-14): 1029-37. DOI: https://doi.org/10.1016/j.ijpara.2019.08.003

52. Coakley G., Maizels R.M., Buck A.H. Exosomes and other extracellular vesicles: the new communicators in parasite infections. Trends Parasitol. 2015; 31: 477-89. DOI: https://doi.org/10.1016/j.pt.2015.06.009

53. Zheng Y., Guo X., He W., Shao Z., Zhang X., Yang J., et al. Effects of Echinococcus multilocularis miR-71 mimics on murine macrophage RAW264.7 cells. Int Immunopharmacol. 2016; 34: 259-62. DOI: https://doi.org/10.1016/j.intimp.2016.03.015

54. Contreras-Naranjo J.C., Wu H.-J., Ugaz V.M. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017; 17 (21): 3558-77. DOI: https://pubmed.ncbi.nlm.nih.gov/28832692/

55. Chen B.-Y.,Sung C.W.-H., Chen C., Cheng C.-M., Lin D.P.-C., Huang C.-T., et al. Advances in exosomes technology. Clin Chim Acta. 2019; 493: 14-9. DOI: https://doi.org/10.1016/j.cca.2019.02.021

56. Zhu G., Chen X. Aptamer-based targeted therapy. Adv Drug Deliv Rev. 2018; 134: 65-78. DOI: https://doi.org/10.1016/j.addr.2018.08.005

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
Aleksandr V. Gorelov
Academician of the Russian Academy of Sciences, MD, Head of Infection Diseases and Epidemiology Department of the Scientific and Educational Institute of Clinical Medicine named after N.A. Semashko ofRussian University of Medicine, Ministry of Health of the Russian Federation, Professor of the Department of Childhood Diseases, Clinical Institute of Children's Health named after N.F. Filatov, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Deputy Director for Research, Central Research Institute of Epidemiology, Rospotrebnadzor (Moscow, Russian Federation)

Journals of «GEOTAR-Media»