COVID-19 - a set of symptoms or a systemic pathology? Clinical lecture Part 2. Areplivir (favipiravir) in the treatment of patients with coronavirus infection: background of use and first results

Abstract

Clinical practice shows that in addition to a life-threatening condition caused by lung damage, the SARS-CoV-2 virus provokes multiple organ damage and systemic endothelial inflammation, leading to serious, often fatal consequences. The complex pathophysiology of the virus and the mechanisms of its effect on the body require the development of complex therapy aimed at minimizing the systemic damage, as well as protecting the organs and tissues involved in order to improve the prognosis of the course of the disease. Early initiation of antiviral therapy aimed at inhibiting a specific mechanism of the SARS-CoV-2 virus is necessary to reduce the viral load and the risk of complications. The review provides information on the safety and clinical efficacy of favipiravir in the treatment of infectious diseases caused by RNA viruses, in particular COVID-19, as well as the possibility of using Areplivir (favipiravir) in patients with new coronavirus infection.

Keywords:COVID-19, SARS-CoV-2, cytokine storm, immunologic response, antiviral therapy, favipiravir, Areplivir

Funding. The research was carried out at the initiative of the Promomed RUS company. The sponsor had no influence on the analysis and interpretation of the results.

Conflict of interests. The authors declare that there is no conflict of interest.

Contribution. Choice and processing of material - Granovskaya M.V., Zaslavskaya K.Ya.; writing text - Granovskaya M.V., Zaslavskaya K.Ya.; editing - Balykova L.A., Pushkar D.Yu.

For citation: Granovskaya M.V., Zaslavskaya K.Ya., Balykova L.A., Pushkar D.Yu. COVID-19 - a set of symptoms or a systemic pathology? Clinical lecture. Part 2. Areplivir (favipiravir) in the treatment of patients with coronavirus infection: background of use and first results. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2020; 9 (3). Supplement. 10-7. DOI: https://doi.org/10.33029/2305-3496-2020-9-3S-10-17 (in Russian)

References

1. Zhou P., Yang X.L., Wang X.G., Hu B., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579 (7798): 270-3. DOI: https://doi.org/10.1038/s41586-020-2012-7

2. Gupta A., Madhavan M.V., Sehgal K., Nair N., et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020; 26 (7): 1017-32. DOI: https://doi.org/10.1038/s41591-020-0968-3

3. Siu K.L., Yuen K.S., Castano-Rodriguez C., Ye Z.W., et al. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiq-uitination of ASC. FASEB J. 2019; 33 (8): 8865-77. DOI: https://doi.org/10.1096/fj.201802418R

4. Sisay M. Available evidence and ongoing clinical trials of remdesivir: could it be a promising therapeutic option for COVID-19? Front Pharmacol. 2020; 11: 791. DOI: https://doi.org/10.3389/fphar.2020.00791

5. De Clercq E. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem Asian J. 2019; 14: 3962-8. DOI: https://doi.org/10.1002/asia.201900841

6. Shiraki K., Daikoku T Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol Ther. 2020; 209: 107512. DOI: https://doi.org/10.1016/j.phar-mthera.2020.107512

7. Furuta Y., Takahashi K., Kuno-Maekawa M., Sangjawa H., et al. Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother. 2005; 49 (3): 981-6. DOI: https://doi.org/10.1128/AAC.49.3.981-986.2005

8. Furuta Y., Komeno T., Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017; 93 (7): 449-63. DOI: https://doi.org/10.2183/pjab.93.027

9. Takahashi K., Furuta Y., Fukuda Y., Kuno M., et al. In vitro and in vivo activities of T-705 and oseltamivir against influenza virus. Antivir Chem Chemother. 2003; 235-41. DOI: https://doi.org/10.1177/095632020301400502

10. Kiso M., Takahashi K., Sakai-Tagjawa Y., Shinya K., et al. T-705 (favipiravir) activity against lethal H5N1 influenza A viruses. Proc Natl Acad Sci USA. 2010; 107 (2): 882-7. DOI: https://doi.org/10.1073/pnas.0909603107

11. Song R., Chen Z., Li W. Severe fever with thrombocytopenia syndrome (SFTS) treated with a novel antiviral medication, favipiravir (T-705). Infection. 2020; 48 (2): 295-8. DOI: https://doi.org/10.1007/s15010-019-01364-9

12. Delang L., Abdelnabi R., Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res. 2018; 153: 85-94. DOI: https://doi.org/10.1016/j.antiviral.2018.03.003

13. Rocha-Pereira J., Jochmans D., Dallmeier K., Leyssen P., et al. Favipiravir (T-705) inhibits in vitro norovirus replication. Biochem Biophys Res Commun. 2012; 424 (4): 777-80. DOI: https://doi.org/10.1016/j.bbrc.2012.07.034

14. Zmurko J., Marques R.E., Schols D., Verbeken E., et al. The viral polymerase inhibitor 7-deaza-2'-c-methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLoSNegl Trop Dis. 2016; 10 (5): e0004695. DOI: https://doi.org/10.1371/journal.pntd.0004695

15. Delang L., Segura Guerrero N., Tas A., et al. Mutations in the chikungunya virus nonstructural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. J Antimicrob Chemother. 2014; 69 (10): 2770-84. DOI: https://doi.org/10.1093/jac/dku209

16. Safronetz D., Falzarano D., Scott D.P., Furuta Y., el al. Antiviral efficacy of favipiravir against two prominent etiological agents of hantavirus pulmonary syndrome. Antimicrob Agents Chemother. 2013; 57 (10): 4673-80. DOI: https://doi.org/10.1128/AAC.00886-13

17. Wang Y., Fan G., Salam A., et al. Comparative effectiveness of combined favipiravir and oseltamivir therapy versus oseltamivir monotherapy in critically ill patients with influenza virus infection. J Infect Dis. 2020; 221 (10): 1688-98. DOI: https://doi.org/10.1093/infdis/jiz656

18. Sissoko D., Laouenan C., Folkesson E., M'Lebing A.B., et al. Experimental treatment with favipiravir for Ebola virus disease (the JIKI Trial): a historically controlled, single-arm proof-of-concept trial in Guinea. PLoS Med. 2016; 13 (3): e1001967. DOI: https://doi.org/10.1371/journal.pmed.1001967

19. Naesens L., Guddat L.W., Keough D.T., van Kuilenburg A.B.P., et al. Role of human hy-poxanthine guanine phosphoribosyltransferase in activation of the antiviral agent T-705 (favipi-ravir). Mol Pharmacol. 2013; 84(4): 615-29. DOI: https://doi.org/10.1124/mol.113.087247

20. Avigan, Tablet 200 mg. Report on the deliberation results. 2014. Available from: https://www.pmda.go.jp/files/000210319.pdf

21. Baranovich T., Wong S.S., Armstrong J., Marjuki H., et al. T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol. 2013; 87 (7): 3741-51. DOI: https://doi.org/10.1128/JVI.02346-12

22. Vanderlinden E., Vrancken B., Van Houdt J., Rajwanshi V.K., et al. Distinct effects of T-705 (favipiravir) and ribavirin on influenza virus replication and viral RNA synthesis. Antimicrob Agents Chemother. 2016; 60 (11): 6679-91. DOI: https://doi.org/10.1128/AAC.01156-16

23. de Avila A.I., Gallego I., Soria M.E., et al. Lethal mutagenesis of hepatitis C virus induced by favipiravir. PLoS One. 2016; 11 (10): e0164691. DOI: https://doi.org/10.1371/journal.pone.0164691

24. Arias A., Thorne L., Goodfellow I. Favipiravir elicits antiviral mutagenesis during virus replication in vivo. Elife. 2014; 3: e03679. DOI: https://doi.org/10.7554/eLife.03679

25. Nagata T., Lefor A.K., Hasegawa M., Ishii M. Favipiravir: a new medication for the Ebola virus disease pandemic. Disaster Med Public Health Prep. 2015; 9 (1): 79-81. DOI: https://doi.org/10.1017/dmp.2014.151

26. Астахова А.В., Лепахин В.К. Неблагоприятные побочные реакции и контроль безопасности // Безопасность лекарств и фармаконадзор. 2009. № 2. С. 2-22. [Astakhova A.V., Lepahin V.K. Adverse reactions and safety controls. Bezopasnost' lekarstv i farmakonadzor [Drug Safety and Pharmacovigilance]. 2009; (2): 2-22. (in Russian)]

27. Елисеева Е.В., Феоктистова Ю.В. Анализ фармакотерапии у беременных // Безопасность лекарств и фармаконадзор. 2009. № 2. С. 23-28. [Eliseeva E.V., Feoktistova Yu.V. Analysis of pharmacotherapy in pregnant women. Bezopasnost' lekarstv i farmakonadzor [Drug Safety and Pharmacovigilance]. 2009; (2): 23-8. (in Russian)]

28. Pilkington V., Pepperrell T., Hill A. A review of the safety of favipiravir - a potential treatment in the COVID-19 pandemic? J Virus Erad. 2020; 6 (2): 45-51. DOI: https://doi.org/10.1016/S2055-6640(20)30016-9

29. Kumagjai Y., Murakawa Y., Hasunuma T., Aso M., et al. Lack of effect of favipiravir, a novel antiviral agent, on the QT interval in healthy Japanese adults. Int J Clin Pharmacol Ther. 2015; 53: 866-74. DOI: https://doi.org/10.5414/CP202388

30. Zhao Y., Harmatz J.S., Epstein C.R., et al. Favipiravir inhibits acetaminophen sulfate formation but minimally affects systemic pharmacokinetics of acetaminophen. Br J Clin Pharmacol. 2015; 80 (5): 1076-85. DOI: https://doi.org/10.1111/bcp.12644

31. Wang M., Cao R., Zhang L., Yang X., et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30 (3): 269-271. DOI: https://doi.org/10.1038/s41422-020-0282-0

32. ChenC, ZhangY., Huang J., Yin P., et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. medRxiv. 2020.03.17.20037432. DOI: https://doi.org/10.1101/2020.03.17.20037432

33. Cai Q., Yang M., Liu D., Chen J., et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing). 2020. DOI: https://doi.org/10.1016/j.eng.2020.03.007. Epub ahead of print.

34. Preliminary report of the favipiravir observational study in Japan -2020/5/15-Favipiravir Observational Study Group. Available from: http://www.kansensho.or.jp/up-loads/files/topics/2019ncov/covid19_casereport_en_200529.pdf

35. Rattanaumpawan P., Jirajariyavej S., Lerdlamyong K., Palavutitotai N., et al. Real-world experience with favipiravir for treatment of COVID-19 in Thailand: results from a multicenter observational study. Preprint. 2020. DOI: https://doi.org/10.1101/2020.06.24.20133249

36. Grls.rosminzdrav.ru

37. Favipiravir Observational Study Group, Preliminary Report of the Favipiravir Observational Study in Japan -2020/5/15). https://www.kansensho.or.jp/uploads/files/topics/2019ncov/covid19_casereport_en_200529.pdf.

38. Li S., Wu Z., Li L., Liu X. Interleukin-6 (IL-6) receptor antagonist protects against rheumatoid arthritis. Med Sci Monit. 2016; 22: 2113-8. DOI: https://doi.org/10.12659/msm.896355

39. Ahmed S., Marotte H., Kwan K., Ruth J.H., et al. Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production. Proc Natl Acad Sci USA. 2008; 105 (38): 14692-7. DOI: https://doi.org/10.1073/pnas.0802675105

40. https://www.healio.com/news/rheumatology/20200319/sarilumab-enters-clinical-trial-for-covid19-spotlighting-key-role-for-il6

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
Aleksandr V. Gorelov
Academician of the Russian Academy of Sciences, MD, Head of Infection Diseases and Epidemiology Department of the Scientific and Educational Institute of Clinical Medicine named after N.A. Semashko ofRussian University of Medicine, Ministry of Health of the Russian Federation, Professor of the Department of Childhood Diseases, Clinical Institute of Children's Health named after N.F. Filatov, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Deputy Director for Research, Central Research Institute of Epidemiology, Rospotrebnadzor (Moscow, Russian Federation)

Journals of «GEOTAR-Media»