Pathogenesis of brucellosis: analysis of the immunopathological concept

Abstract

The review analyzes the immunopathological concept of brucellosis pathogenesis based on the regularities of molecular-cellular mechanisms of brucellosis interaction with macroorganism immunity factors. Herein is given the characteristic of the main pathogenicity factors of Brucella that ensure the implementation of the strategy of "hidden" penetration, inhibition of natural resistance factors and evasion of adaptive immunity.

Keywords:brucellosis, pathogenesis, persistence, brucellosis pathogenicity factors, immune response, infectious immunity

Funding. There was no financial support for writing this publication.

Conflict of interests. The authors declare no conflict of interest.

Contributions. Collecting, processing the material, writing the text - Ponomarenko D.G., Sarkisyan N.S.; editing, approval of the final version of the article - Kulichenko A.N.

For citation: Ponomarenko D.G., Sarkisyan N.S., Kulichenko A.N. Pathogenesis of brucellosis: analysis of the immunopathological concept. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2020; 9 (3): 96-105. DOI: https://doi.org/10.33029/2305-3496-2020-9-3-96-105 (in Russian)



References

1. Guidelines for the epidemiology of infectious diseases. In2 vols. Vol. 1 / Briko N.I., Onishchenko G.G., Pokrovsky V.I. Moscow: Meditsinskoe informatsionnoe agentstvo,2019: 880 p. (in Russian)

2. Amjadi O., Rafiei A., Mardani M., Zafari P., Zarifian A. A review of the immunopathogenesis of Brucellosis. Infect Dis (Lond). 2019; 51 (5): 321-33. DOI: https://doi.org/10.1080/23744235.2019.1568545

3. Moreno E., et al. Brucella melitensis: a nasty bug with hidden credentials for virulence. Proc Natl Acad Sci USA. 2002; 99: 1-3.

4. Moreno-Lafont M.C., et al. Antigen-specific activation and proliferation of CD4+ and CD8+ T lymphocytes from brucellosis patients. Trans. R. Soc. Trop. Med. Hyg. 2002; 96 (3): 340-7.

5. Barquero-Calvo E., et al. Brucella abortus induces the premature death of human neutrophils through the action of its lipopolysaccharide. PLoS One. 2015; 11 (5): e1004853.

6. Byndloss M.X., et al. Brucella spp. virulence factors and immunity. Annu Rev Anim Biosci. 2016; 4: 111-27.

7. Hartigh A.B., et al. VirB3 to VirB6 and VirB8 to VirB11, but not VirB7, are essential for mediating persistence of Brucella in the reticuloendothelial system. J Bacteriol. 2008; 190: 4427-36.]

8. Roset M.S., Ibañez A.E., de Souza Filho J.A., et al. Brucella cyclic β-1,2-glucan plays a critical role in the induction of splenomegaly in mice. PLoS One. 2014; 9 (7): e101279. DOI: https://doi.org/10.1371/journal.pone.0101279

9. Kaplan-Türköz B., Koelblen T., Felix C., et al. Structure of the Toll/interleukin 1 receptor (TIR) domain of the immunosuppressive Brucella effector BtpA/Btp1/TcpB. FEBS Lett. 2013; 587: 3412-6. DOI: https://doi.org/10.1016/j.febslet.2013.09.007

10. Dubrovina V.I., Konovalova Z.A., Yastremskaya K.U., Barannikova N.L., Tokareva L.E., Balakhonov S.V. The mechanisms of cellular immune response in brucellosis. Epidemiologiya i vaktsinoprofilaktika [Epidemiology and Vaccine Prophylaxis]. 2016; 15 (6): 80-7. URL: https://doi.org/10.31631/2073-3046-2016-15-6-80-87 (in Russian)

11. Pokrovskiy V.I., Pak S.G., Briko N.I., Danilkin B.K. Infectious diseases and epidemiology: Textbook. 2nd ed. Moscow: GEOTAR-Media, 2007: 816 p. (in Russian)

12. de Figueiredo P., Ficht T.A., Rice-Ficht A., et al. Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions. Am J Pathol. 2015; 185 (6): 1505-17. DOI: https://doi.org/10.1016/j.ajpath.2015.03.003

13. Malov V.A. Therapeutic masks for brucellosis. Farmateka [Pharmateca]. 2011; (4): 22-8. (in Russian)

14. Sauret J.M., Vilissova N. Human brucellosis. J Am Board Fam Pract. 2002; 15 (5): 401-6.

15. Kleinman C.L., et al. ChIP-seq analysis of the LuxR-type regulator VjbR reveals novel insights into the Brucella virulence gene expression network. Nucleic Acids Res. 2017; 45 (10): 5757-69.

16. Guzman-Verri C., et al. The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of membrane proteins with counterparts in members of the Rhizobiaceae. Proc Natl Acad Sci USA. 2008; 99: 12 375-80.

17. Döhmer P.H., et al. Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell Microbiol. 2014; 16 (3): 396-410.

18. Byndloss M.X., et al. How bacterial pathogens use type III and type IV secretion systems to facilitate their transmission. Curr Opin Microbiol. 2017; 35: 1-7.

19. Ke Y., Wang Y., Li W., Chen Z. Type IV secretion system of Brucella spp. and its effectors. Front Cell Infect Microbiol. 2015; 5: 72.

20. Mary C., Fouillen A., Bessette B., et al. Interaction via the N terminus of the type IV secretion system (T4SS) protein VirB6 with VirB10 is required for VirB2 and VirB5 incorporation into T-pili and for T4SS function. J Biol Chem. 2018; 293 (35) 13 415-426.

21. Kulakov Yu.K. Molecular aspects of Brucella persistence. Molekulyarnaya genetika, mikrobiologiya i virusologiya [Molecular Genetics, Microbiology, Virology]. 2016; (1): 3-8. (in Russian)

22. Gorchakova N.G. Features of the parasitic system of brucellosis. Nauchno-issledovatel'skie publikatsii [Research Publications]. 2017; (4): 14-27. (in Russian)

23. Olsen S.C., et al. Advancement of knowledge of Brucella over the past 50 years. Vet Pathol. 2014; 51 (6): 1076-89.

24. Barquero-Calvo E., et al. Brucella abortus induces the premature death of human neutrophils through the action of its lipopolysaccharide. PLoS One. 2015; 11 (5) e1004853.

25. Celli J., et al. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med. 2003; 198: 545-56.

26. Myeni S., Child R., Ng T.W., et al. Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. J PLoS Pathog. 2013; 9: e100356.

27. Xavier M.N., et al. Pathogenesis of Brucella spp. Open Vet Sci J. 2010; 4: 109-18.

28. Roop R.M., et al. Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Med Microbiol Immunol. 2009; 198 (4): 221-38.

29. Herrou J., et al. Periplasmic protein EipA determines envelope stress resistance and virulence in Brucella abortus. Mol Microbiol. 2019; 111 (3): 637-61.

30. Herrou J., Willett J.W., Fiebig A., et al. Brucella periplasmic protein EipB is a molecular determinant of cell envelope integrity and virulence. J Bacteriol. 2019; 201 (12): e0013419. DOI: https://doi.org/10.1128/JB.00134-19

31. Poester F.P., Samartino L.E., Santos R.L. Pathogenesis and pathobiology of brucellosis in livestock. Rev Sci Tech. 2013; 32 (1): 105-15.

32. Altamirano-Silva P., Meza-Torres J., Castillo-Zeledón A., et al. Brucella abortus senses the intracellular environment through the BvrR/BvrS two-component system, which allows B. abortus to adapt to its replicative niche. Infect Immun. 2018; 86 (4): 713-7.

33. Forestier C., et al. Brucella abortus lipopolysaccharide in murine peritoneal macrophages acts as a down-regulator of T cell activation. Immunology. 2000; 165 (9): 5202-10.

34. Logvinenko O.V., Rakitina E.L., Ponomarenko D.G., Kostyuchenko M.V., Sarkisyan N.S., Berdnikiva T.V. Features of immunological parameters of blood in patients with various forms of brucellosis. Infektsiya i immunitet [Infection and Immunity]. 2013; 3 (3): 275-8. (in Russian)

35. Zheng R., et al. Meta-analysis of the changes of peripheral blood T cell subsets in patients with brucellosis. J Immunol Res. 2018; 2018: 8439813.

36. Zheleznokova G.F. Regulatory T-lymphocytes in the immune response to infection. Zhurnal infektologii [Journal of Infectology]. 2011; (1): 6-13.

37. Bahador A., et al. Frequencies of CD4+ T regulatory cells and their CD25high and FoxP3high subsets augment in peripheral blood of patients with acute and chronic brucellosis. Osong Public Health Res Perspect. 2014; 5 (3): 161-8.

38. Shevach E., et al. Control of T cell activation by CD4+CD25+ suppressor T cells. Immunol Rev. 2001; 182: 58-67.

39. De P., et al. Structural determinants in a glucose-containing lipopolysaccharide from Mycobacterium tuberculosis critical for inducing a subset of protective T cells. J Biol Chem. 2018; 293 (25): 9706-17.

40. Kilic S.S., et al. Gamma/delta T cells in patients with acute brucellosis. Clin Exp Med. 2009; 9 (2): 101-4.

41. Liautard J., et al. Identification and isolation of Brucella suis virulence genes involved in resistance to the human innate immune system. Infect Immun. 2007; 75 (11): 5167-74.

42. De Long M.F., Tsolis R.M. Brucellosis and type IV secretion. Future Microbiol. 2012; 7 (1): 47-58.

43. Dornand J., et al. Impairment of intramacrophagic Brucella suis multiplication by human natural killer cells through a contact-dependent mechanism. Infect Immun. 2004; 72 (4): 2303-11.

44. Gao Ning, et al. Regulatory role of natural killer (NK) cells on antibody responses to Brucella abortus. Innate Immun. 2011; 17 (2): 152-63.

45. Bessoles S., et al. Human CD4+ invariant NKT cells are involved in antibacterial immunity against Brucella suis through CD1d-dependent but CD4-independent mechanisms. Eur J Immunol. 2009; 39 (4): 1025-35.

46. Rakitina E.L., Logvinenko O.V., Ponomarenko D.G., Kostyuchenko M.V., Borzdova I.Yu., Golub O.G. Analysis of the content of NKT-lymphocytes in patients with acute and chronic brucellosis. In: Actual problems of diseases common to humans and animals: materials of the II All-Russian Scientific-Practical Conference. 2017: 273-5. (in Russian)

47. Ponomarenko D.G., Logvinenko O.V., Sarkisian N.S., Rakitinа C.L, Golub O.G., Kulichenko A.N. A new approach to Brucellosis allergodiagnostics. Infektsiya i immunitet[Infection and Immunity]. 2013: 3 (1): 89-92. (in Russian)

48. Sarkisуan N.S., Ponomarenko D.G., Logvinenko V.O., Rakitina E.L., Kostyuchenko M.V., Kulichenko A.N. Intensity of specific sensitization and immune profile in patients with Brucellosis. Meditsinskaya immunologiya [Medical Immunology (Russia)]. 2016; 18 (4): 365-72. (in Russian). DOI:https://doi.org/10.15789/1563-0625-2016-4-365-372

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
Aleksandr V. Gorelov
Academician of the Russian Academy of Sciences, MD, Head of Infection Diseases and Epidemiology Department of the Scientific and Educational Institute of Clinical Medicine named after N.A. Semashko ofRussian University of Medicine, Ministry of Health of the Russian Federation, Professor of the Department of Childhood Diseases, Clinical Institute of Children's Health named after N.F. Filatov, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Deputy Director for Research, Central Research Institute of Epidemiology, Rospotrebnadzor (Moscow, Russian Federation)

Journals of «GEOTAR-Media»