Lipid metabolism indicators in patients with SARS-CoV-2 infection

Abstract

The aim of the study was to analyze the published results of determining the parameters of lipid metabolism in patients with COVID-19 and convalescents.

Material and methods. The articles were searched in the PubMed, Elsevier, Scopus, Google Scholar, eLIBRARY databases for the period from 2019 to 2023 using the keywords: lipid profile, cholesterol, triglycerides, COVID-19, SARS-CoV-2, multiple organ failure, disease severity, mortality. A total of 134 publications were found, 54 full-text articles with the results of clinical, randomized and cohort studies, 5 systematic reviews and 4 meta-analyses were selected for analysis.

Results and discussion. Multidirectional changes in lipid profile parameters were established in patients with COVID-19 and in the postcovid period. Low levels of high-density lipoproteins (HDL), before SARS-CoV-2 infection have been observed in patients with severe COVID-19. Low HDL and apolipoprotein A-I levels increase the risk of COVID-19 disease. Monitoring lipid/lipoprotein levels can predict the severity of the disease. Patients with COVID-19 with low levels of LDL and/or HDL have an increased risk of developing severe course of the disease with higher mortality. An increase in lipoprotein (a) levels may be a marker of the possible development of complications, especially thromboticones. In the postcovid period, there is a risk of developing dyslipidemia.

Conclusion. Hypolipidemic drugs (PCSK9 inhibitors and omega-3 fatty acids) may be recommended in the complex treatment of COVID-19.

Keywords:cholesterol; lipoproteins; triglycerides; COVID-19; SARS-CoV-2; post-COVID-19

Funding. The study had no sponsor support.

Conflict of interest. The authors declare no conflict of interest.

Contribution. The concept and design of the study – Volynets L.I., Konyshko N.A.; collection and processing of the material – Konyshko N.A., Konyshko G.S.; writing the text – Konyshko N.A., Volynets L.I., Konyshko G.S.; editing – Volynets L.I., Konyshko N.A.

For citation: Konyshko N.A., Volynets L.I., Konyshko G.S. Lipid metabolism indicators in patients with SARS-CoV-2 infection. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2024; 13 (1): 58–66. DOI: https://doi.org/10.33029/2305-3496-2024-13-1-58-66 (in Russian)

References

1. Feingold K.R. Lipid and Lipoprotein Levels in Patients with COVID-19 Infections. Endotext. South Dartmouth, MA, 2022: 116 p.

2. Hu X., Chen D., Wu L. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin Chim Acta. 2020; 510: 105–10. DOI: https://doi.org/10.1016/j.cca.2020.07.015

3. Sun J.T., Chen Z., Nie P. Lipid profile features and their associations with disease severity and mortality in patients with COVID-19. Front Cardiovasc Med. 2020; 7: 584987. DOI: https://doi.org/10.3389/fcvm.2020.584987

4. Kočar E., Režen T., Rozman D. Cholesterol, lipoproteins, and COVID-19: basic concepts and clinical applications. Biochim Biophys Acta Mol Cell Biol Lipids. 2021; 1866 (2): 158849. DOI: https://doi.org/10.1016/j.bbalip.2020.158849

5. Li X., Xu S., Yu M. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunology. 2020; 146 (1): 110–8. DOI: https://doi.org/10.1016/j.jaci.2020.04.006

6. Zinellu A., Paliogiannis P., Fois A.G. Cholesterol and triglyceride concentrations, COVID-19 severity, and mortality: a systematic review and meta-analysis with meta-regression. Front. Public Health. 2021; 9: 705916. DOI: https://doi.org/10.3389/fpubh.2021.705916

7. Rader D.J. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest. 2006; 116: 3090–100. DOI: https://doi.org/10.1172/JCI30163

8. Qin C., Minghan H., Ziwen Z., Yukun L. Alteration of lipid profile and value of lipids in the prediction of the length of hospital stay in COVID-19 pneumonia patients. Food Sci Nutr. 2020; 8: 6144–52. DOI: https://doi.org/10.1002/fsn3.1907

9. Zinellu A., Mangoni A.A. Serum prealbumin concentrations, COVID-19 severity, and mortality: a systematic review and meta-analysis. Front Med. 2021; 8: 638529. DOI: https://doi.org/10.3389/fmed.2021.638529

10. Ballout R.A., Kong H., Sampson M. The NIH Lipo-COVID study: a pilot NMR investigation of lipoprotein subfractions and other metabolites in patients with severe COVID-19. Biomedicines. 2021; 9: 2110–15. DOI: https://doi.org/10.3390/biomedicines9091090

11. Souza Junior D.R., Silva A.R.M., Rosa-Fernandes L. HDL proteome remodeling associates with COVID-19 severity. J Clin Lipidol. 2021; 15: 796–804. DOI: https://doi.org/10.1016/j.jacl.2021.10.005

12. Stadler J.T., Mangge H., Rani A. Low HDL cholesterol efflux capacity indicates a fatal course of COVID-19. Antioxidants. 2022; 11: 1314–20. DOI: https://doi.org/10.3390/antiox11101858

13. Wei X., Zeng W., Su J., Wan H., Yu X., Cao X., et al. Hypolipidemia is associated with the severity of COVID-19. J Clin Lipidol. 2020; 14: 297–304. DOI: https://doi.org/10.1016/j.jacl.2020.04.008

14. Khovidhunkit W., Kim M.S., Memon R.A., et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res. 2004; 45: 1169–96. DOI: https://doi.org/10.1194/jlr.R300019-JLR200

15. Ettinger W.H., Varma V.K., Sorci-Thomas M., et al. Cytokines decrease apolipoprotein accumulation in medium from Hep G2 cells. Arterioscler Thromb. 1994; 14: 8–13. DOI: https://doi.org/10.1161/01.atv.14.1.8

16. Moorby C.D., Gherardi E., Dovey L., et al. Transforming growth factor-beta 1 and interleukin-1 beta stimulate LDL receptor activity in Hep G2 cells. Atherosclerosis. 1992; 97: 21–8. DOI: https://doi.org/10.1016/0021-9150(92)90047-k

17. Pirillo A., Catapano A.L., Norata G.D. HDL in infectious diseases and sepsis. Handb Exp Pharmacol. 2015; 224: 483–508. DOI: https://doi.org/10.1007/978-3-319-09665-0_15

18. Zampino R., Patauner F., Karruli A., et al. Prognostic value of decreased high-density lipoprotein cholesterol levels in infective endocarditis. J Clin Med. 2022; 11: 957. DOI: https://doi.org/10.3390/jcm11040957

19. Krauss R.M., Grunfeld C., Doerrler W.T., et al. Tumor necrosis factor acutely increases plasma levels of very low-density lipoproteins of normal size and composition. Endocrinology. 1990; 127: 1016–21. DOI: https://doi.org/10.1210/endo-127-3-1016

20. Lu B., Moser A., Shigenaga J.K., et al. The acute phase response stimulates the expression of angiopoietin like protein 4. Biochem Biophys Res Commun. 2010; 391: 1737–41. DOI: https://doi.org/10.1016/j.bbrc.2009.12.145

21. Wade D.P., Clarke J.G., Lindahl G.E., et al. 5’ control regions of the apolipoprotein(a) gene and members of the related plasminogen gene family. Proc Natl Acad Sci USA. 1993; 90: 1369–73. DOI: https://doi.org/10.1073/pnas.90.4.1369

22. Schultz O., Oberhauser F., Saech J., et al. Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (a) levels in human subjects with rheumatoid diseases. PLoS One. 2010; 5: 14328. DOI: https://doi.org/10.1371/journal.pone.0014328

23. Feingold K.R. The bidirectional link between HDL and COVID-19 infections. J Lipid Res. 2021; 62: 100067. DOI: https://doi.org/10.1016/j.jlr.2021.100067

24. Iribarren C., Jacobs Jr. D.R., Sidney S., et al. Cohort study of serum total cholesterol and in-hospital incidence of infectious diseases. Epidemiol Infect. 1998; 121: 335–47. DOI: https://doi.org/10.1017/s0950268898001435

25. Kaysen G.A., Ye X., Raimann J.G., et al. Monitoring dialysis outcomes I. Lipid levels are inversely associated with infectious and all-cause mortality: international MONDO study results. J Lipid Res. 2018; 59: 1519–28. DOI: https://doi.org/10.1194/jlr.P084277

26. Mostaza J.M., Salinero-Fort M.A., Cardenas-Valladolid J., et al. Pre-infection HDL-cholesterol levels and mortality among elderly patients infected with SARS-CoV-2. Atherosclerosis. 2022; 341: 13–9. DOI: https://doi.org/10.1016/j.atherosclerosis.2021.12.009

27. Hilser J.R., Han Y., Biswas S., et al. Association of serum HDL-cholesterol and apolipoprotein A1 levels with risk of severe SARS-CoV-2 infection. J Lipid Res. 2021; 62: 100061. DOI: https://doi.org/10.1016/j.jlr.2021.100061

28. Cho K.H., Kim J.R., Lee I.C., et al. Native high-density lipoproteins (HDL) with higher paraoxonase exerts a potent antiviral effect against SARS-CoV-2 (COVID-19), while Glycated HDL lost the antiviral activity. Antioxidants (Basel). 2021; 10 (2): 209. DOI: https://doi.org/10.3390/antiox10020209

29. Feng Q., Wei W.Q., Chaugai S., et al. Association between low-density lipoprotein cholesterol levels and risk for sepsis among patients admitted to the hospital with infection. JAMA Netw Open. 2019; 2 (1): e187223. DOI: https://doi.org/10.1001/jamanetworkopen.2018.7223

30. Madsen C.M., Varbo A., Tybjaerg-Hansen A., et al. U-shaped relationship of HDL and risk of infectious disease: two prospective population-based cohort studies. Eur Heart J. 2018; 39: 1181–90. DOI: https://doi.org/10.1093/eurheartj/ehx665

31. Trinder M., Walley K.R., Boyd J.H., et al. Causal inference for genetically determined levels of high-density lipoprotein cholesterol and risk of infectious disease. Arterioscler Thromb Vasc Biol. 2020; 40: 267–78. DOI: https://doi.org/10.1161/ATVBAHA.119.313381

32. Aung N., Khanji M.Y., Munroe P.B., et al. Causal inference for genetic obesity, cardiometabolic profile and COVID-19 susceptibility: a mendelian randomization study. Front Genet. 2020; 11: 586308. DOI: https://doi.org/10.3389/fgene.2020.586308

33. Zhang K., Dong S.S., Guo Y., et al. Causal associations between blood lipids and COVID-19 risk: a two-sample mendelian randomization study. Arterioscler Thromb Vasc Biol. 2021; 41: 2802–10. DOI: https://doi.org/10.1161/ATVBAHA.121.316324

34. Yoshikawa M., Asaba K., Nakayama T. Estimating causal effects of atherogenic lipid-related traits on COVID-19 susceptibility and severity using a two-sample Mendelian randomization approach. BMC Med Genom. 2021; 14: 269. DOI: https://doi.org/10.1186/s12920-021-01127-2

35. Leong A., Cole J.B., Brenner L.N., et al. Cardiometabolic risk factors for COVID-19 susceptibility and severity: a Mendelian randomization analysis. PLoS Med. 2021; 18: 1003553. DOI: https://doi.org/10.1371/journal.pmed.1003553

36. Di Maio S., Lamina C., Coassin S., et al. Lipoprotein(a) and SARS-CoV-2 infections: susceptibility to infections, ischemic heart disease and thromboembolic events. J Intern Med. 2022; 291: 101–7. DOI: https://doi.org/10.1111/joim.13338

37. Kuo C.L., Pilling L.C., Atkins J.L., et al. APOE e4 genotype predicts severe COVID-19 in the UK biobank community cohort. J Gerontol A Biol Sci Med Sci. 2020; 75: 2231–2. DOI: https://doi.org/10.1093/gerona/glaa131

38. Mohammadshahi J., Ghobadi H., Matinfar G., et al. Role of lipid profile and its relative ratios (Cholesterol/HDL-C, Triglyceride/HDL-C, LDL-C/HDL-C, WBC/HDL-C, and FBG/HDL-C) on admission predicts in-hospital mortality COVID-19. J Lipids. 2023; 4: 6329873-10. DOI: https://doi.org/10.1155/2023/6329873

39. Taborda N.A., Blanquiceth Y., Urcuqui-Inchima S., Latz E., Hernandez J.C. High-density lipoproteins decrease proinflammatory activity and modulate the innate immune response. J Interferon Cytokine Res. 2019; 39 (12): 760–70. DOI: https://doi.org/10.1089/jir.2019.0029

40. Mahat R.K., Rathore V., Singh N., et al. Lipid profile as an indicator of COVID-19 severity: a systematic review and meta-analysis. Clin Nutr ESPEN. 2021; 45: 91–101. DOI: https://doi.org/10.1016/j.clnesp.2021.07.023

41. Chidambaram V., Shanmugavel Geetha H., Kumar A., et al. Association of lipid levels with COVID-19 infection, disease severity and mortality: a systematic review and meta-analysis. Front Cardiovasc Med. 2022; 9: 86299. DOI: https://doi.org/10.3389/fcvm.2022.862999

42. Lippi G., Szergyuk I., de Oliveira M.H.S., et al. The role of lipoprotein(a) in coronavirus disease 2019 (COVID-19) with relation to development of severe acute kidney injury. J Thromb Thrombolysis. 2022; 53: 581–5. DOI: https://doi.org/10.1007/s11239-021-02597-y

43. Nurmohamed N.S., Collard D., Reeskamp L.F., et al. Lipoprotein(a), venous thromboembolism and COVID-19: a pilot study. Atherosclerosis. 2022; 341: 43–9. DOI: https://doi.org/10.1016/j.atherosclerosis.2021.12.008

44. Xu E., Xie Y., Al-Aly Z. Risks and burdens of incident dyslipidaemia in long COVID: a cohort study. Lancet Diabetes Endocrinol. 2023; 11 (2): 120–8. DOI: https://doi.org/10.1016/S2213-8587(22)00355-2

45. Onorato D., Pucci M., Carpene G., Henry B.M., Sanchis-Gomar F., Lippi G. Protective effects of statins administration in European and north American patients infected with COVID-19: a meta-analysis. Semin Thromb Hemost. 2021; 47: 392–9. DOI: https://doi.org/10.1055/s-0040-1722307

46. Reiner Z., Hatamipour M., Banach M., Pirro M., Al-Rasadi K., Jamialahmadi T., et al. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch Med Sci. 2020; 16: 490–6. DOI: https://doi.org/10.5114/aoms.2020.94655

47. Myers G.L., Leary E.T., Waymack P.P., Kimberly M.M., Warnick G.R. Standardization of measurements for cholesterol, triglycerides, and major lipoproteins. Lab Med. 2008; 39: 481–90. DOI: https://doi.org/10.1309/6UL9RHJH1JFFU4PY

48. Ghafoori M., Saadati H., Taghavi M., et al. Survival of the hospitalized patients with COVID-19 receiving atorvastatin: a randomized clinical trial. J Med Virol. 2022; 94: 3160–8. DOI: https://doi.org/10.1002/jmv.27710

49. Iqbal Z., Ho J.H., Adam S., et al.; Heart UK’s Medical Scientific and Research Committee. Managing hyperlipidaemia in patients with COVID-19 and during its pandemic: an expert panel position statement from HEART UK. Atherosclerosis. 2020; 313: 126–36. DOI: https://doi.org/10.1016/j.atherosclerosis.2020.09.008

50. Navarese E.P., Podhajski P., Gurbel P.A., et al. PCSK9 inhibition during the inflammatory stage of SARS-CoV-2 infection. J Am Coll Cardiol. 2023; 81: 224–34. DOI: https://doi.org/10.1016/j.jacc.2022.10.030

51. Sedighiyan M., Abdollahi H., Karimi E., et al. Omega-3 polyunsaturated fatty acids supplementation improve clinical symptoms in patients with Covid-19: a randomised clinical trial. Int J Clin Pract. 2021; 75: 14854. DOI: https://doi.org/10.1111/ijcp.14854

52. Doaei S., Gholami S., Rastgoo S., et al. The effect of omega-3 fatty acid supplementation on clinical and biochemical parameters of critically ill patients with COVID-19: a randomized clinical trial. J Transl Med. 2021; 19: 128. DOI: https://doi.org/10.1186/s12967-021-02795-5

53. Kosmopoulos A., Bhatt D.L., Meglis G., et al. A randomized trial of icosapent ethyl in ambulatory patients with COVID-19. iScience. 2021; 24: 103040. DOI: https://doi.org/10.1016/j.isci.2021.103040

54. Chirinos J.A., Lopez-Jaramillo P., Giamarellos-Bourboulis E.J., et al. A randomized clinical trial of lipid metabolism modulation with fenofibrate for acute coronavirus disease 2019. Nat Metab. 2022; 4: 1847–57. DOI: https://doi.org/10.1038/s42255-022-00698-3

55. Soriano J.B., Murthy S., Marshall J.C., Relan P., Diaz J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022; 22: e102–7. DOI: https://doi.org/10.1016/S1473-3099(21)00703-9

56. Ortona E., Malorni W. Long COVID: to investigate immunological mechanisms and sex/gender related aspects as fundamental steps for tailored therapy. Eur Respir J. 2022; 59: 2102245. DOI: https://doi.org/10.1183/13993003.02245-2021

57. Lopez-Leon S., Wegman-Ostrosky T., Perelman C., Sepulveda R., Rebolledo P.A., Cuapio A., et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021; 11: 16144. DOI: https://doi.org/10.1038/s41598-021-95565-8

58. López-Hernández Y., Oropeza-Valdez J.J., García Lopez D.A., Borrego J.C., et al. Untargeted analysis in post-COVID-19 patients reveals dysregulated lipid pathways two years after recovery. Front Mol Biosci. 2023; 10: 1100486. DOI: https://doi.org/10.3389/fmolb.2023.1100486

59. Reiken S., Sittenfeld L., Dridi H., Liu Y., Liu X., Marks A.R. Alzheimer’s-like signaling in brains of COVID-19 patients. Alzheimers Dement. 2022; 18: 955–65. DOI: https://doi.org/10.1002/alz.12558

60. Xie Y., Xu E., Bowe B., Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022; 28: 583–90. DOI: https://doi.org/10.1038/s41591-022-01689-3

61. Al-Aly Z., Xie Y., Bowe B. High-dimensional characterization of postacute sequelae of COVID-19. Nature. 2021; 594: 259–64. DOI: https://doi.org/10.1038/s41586-021-03553-9

62. Guntur V.P., Nemkov T., De Boer E., Mohning M.P., Baraghoshi D., Cendali F.I., et al. Signatures of mitochondrial dysfunction and impaired fatty acid metabolism in plasma of patients with post-acute sequelae of COVID-19 (PASC). Metabolites. 2022; 12: 1026. DOI: https://doi.org/10.3390/metabo12111026

63. Ghini V., Meoni G., Pelagatti L., Celli T., Veneziani F., Petrucci F., et al. Profiling metabolites and lipoproteins in COMETA, an Italian cohort of COVID-19 patients. PLOS Pathog. 2022; 18: 1010443. DOI: https://doi.org/10.1371/journal.ppat.1010443

64. Masana L., Correig E., Ibarretxe D., Anoro E., Arroyo J. A., Jericó C., et al. Low HDL and high triglycerides predict COVID-19 severity. Sci Rep. 2021; 11: 7217. DOI: https://doi.org/10.1038/s41598-021-86747-5

65. Wahlström A., Sayin S.I., Marschall H.U., Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016; 24: 41–50. DOI: https://doi.org/10.1016/j.cmet.2016.05.005

66. Shen B., Yi X., Sun Y., Bi X., Du J., Zhang C., et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell. 2020; 182: 59–72.e15. DOI: https://doi.org/10.1016/j.cell.2020.05.032

67. Zhang S., Luo P., Xu J., Yang L., Ma, P., Tan X., et al. Plasma metabolomics profiles in recovered COVID-19 patients without previous underlying diseases 3 months after discharge. J Inflamm Res. 2021; 14: 4485–501. DOI: https://doi.org/10.2147/JIR.S325853

68. Holstein S.A., Hohl R.J. Isoprenoids: remarkable diversity of form and function. Lipids. 2004; 39: 293–309. DOI: https://doi.org/10.1007/s11745-004-1233-3

69. Gomez Marti J.L., Wells A., Brufsky A.M. Dysregulation of the mevalonate pathway during SARS-CoV-2 infection: an in silico study. J Med Virol. 2021; 93: 2396–405. DOI: https://doi.org/10.1002/jmv.26743

70. Proto M.C., Fiore D., Piscopo C., Pagano C., Galgani M., Bruzzaniti S., et al. Lipid homeostasis and mevalonate pathway in COVID-19: basic concepts and potential therapeutic targets. Prog Lipid Res. 2021; 82: 101099. DOI: https://doi.org/10.1016/j.plipres.2021.101099

71. Acosta-Ampudia Y., Monsalve D.M., Rojas M., Rodríguez Y., Gallo J.E., Salazar Uribe J.C., et al. COVID-19 convalescent plasma composition and immunological effects in severe patients. J Autoimmun. 2021; 118: 102598. DOI: https://doi.org/10.1016/j.jaut.2021.102598

72. Li F., Fu L., Liu X., Liu X. A., Liang Y., Lv Y., et al. Serum metabolomics abnormalities in survivors of non-severe COVID-19. Heliyon. 2022; 8: 10473. DOI: https://doi.org/10.1016/j.heliyon.2022.e10473

73. Meacci E., Pierucci F., Garcia-Gil M. Skeletal muscle and COVID-19: the potential involvement of bioactive sphingolipids. Biomedicines. 2022; 10: 1068. DOI: https://doi.org/10.3390/biomedicines10051068

74. Cowart L.A. A novel role for sphingolipid metabolism in oxidant-mediated skeletal muscle fatigue. Focus on «Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue». Am J Physiol Cell Physiol. 2010; 299: C549–51. DOI: https://doi.org/10.1152/ajpcell.00236.2010

75. Hao Y., Zhang Z., Feng G., Chen M., Wan Q., Lin J., et al. Distinct lipid metabolic dysregulation in asymptomatic COVID-19. iScience. 2021; 24: 102974. DOI: https://doi.org/10.1016/j.isci.2021.102974

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
Aleksandr V. Gorelov
Academician of the Russian Academy of Sciences, MD, Head of Infection Diseases and Epidemiology Department of the Scientific and Educational Institute of Clinical Medicine named after N.A. Semashko ofRussian University of Medicine, Ministry of Health of the Russian Federation, Professor of the Department of Childhood Diseases, Clinical Institute of Children's Health named after N.F. Filatov, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Deputy Director for Research, Central Research Institute of Epidemiology, Rospotrebnadzor (Moscow, Russian Federation)

Journals of «GEOTAR-Media»