Modern representations of the new coronavirus and the disease caused by SARS-COV-2

AbstractThe article reflects the latest data on the assessment of a new coronavirus infection that can lead to the development of COVID-19, with an emphasison the clinic, immunopathogenesis and modern principles of therapy, including severe cases of the disease.

Keywords:COVID-19, SARS-CoV-2, transmission, diagnostics, clinic, immunopathogenesis, treatment

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

For citation: Kostinov M.P., Shmitko A.D., Polishchuk V.B., Khromova E.A. Modern representations of the new coronavirus and the disease caused by SARS-COV-2. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2020; 9 (2): 33-42. DOI: 10.33029/2305-3496-2020-9-2-33-42 (in Russian)

References

1. Zhou P., Yang X.L., Wang X.G., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579 (7798): 270-3. DOI: 10.1038/s41586-020-2012-7.

2. Li W., Moore M.J., Vasilieva N., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426 (6965): 450-4. DOI: 10.1038/nature02145.

3. Kuba K., Imai Y., Rao S., et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005; 11 (8): 875-9. DOI: 10.1038/nm1267.

4. de Wit E., van Doremalen N., Falzarano D., et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14 (8): 523-34. DOI: 10.1038/nrmicro.2016.81.

5. Li Q., Guan X., Wu P., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020; 382 (13): 1199-207. DOI: 10.1056/NEJMoa2001316.

6. Zhang W., Du R.H., Li B., et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020; 9 (1): 386-9. DOI: 10.1080/ 22221751.2020.1729071.

7. Jin Y.H., Cai L., Cheng Z.S., et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020; 7 (1): 4.

8. Guan W.J., Ni Z.Y., Hu Y., et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020 Feb 28. DOI: 10.1056/ NEJMoa2002032.

9. Wang D., Hu B., Hu C., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11). DOI: 10.1001/jama.2020.1585.

10. Poutanen S.M., Low D.E., Henry B., et al. Identification of severe acute respiratory syndrome in Canada. N Engl J Med. 2003; 348 (20): 1995-2005. DOI: 10.1056/NEJMoa030634.

11. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10 223): 497-506. DOI: 10.1016/S0140-6736(20)30183-5.

12. Chen N., Zhou M., Dong X., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395 (10 223): 507-13. DOI: 10.1016/S0140-6736(20)30211-7.

13. Lee N., Hui D., Wu A., et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003; 348 (20): 1986-94. DOI: 10.1056/NEJMoa030685.

14. Assiri A., Al-Tawfiq J.A., Al-Rabeeah A.A., et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013; 13 (9): 752-61. DOI: 10.1016/S1473-3099(13)70204-4.

15. Wang H., Xiao X., Lu J., et al. Factors associated with clinical outcome in 25 patients with avian influenza a (H7N9) infection in Guangzhou, China. BMC Infect Dis. 2016; 16 (1): 534. DOI: 10.1186/s12879-016-1840-4.

16. Wang W., Tang J., Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol. 2020; 92 (4): 441-7. DOI: 10.1002/jmv.25689.

17. Yang X., Yu Y., Xu J., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020 Feb 21. DOI: 10.1016/s2213-2600(20)30079-5.

18. Kui L., Fang Y.Y., Deng Y., et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020 Feb 7. DOI: 10.1097/CM9.0000000000000744.

19. Chung M., Bernheim A., Mei X., et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020; 295 (1): 202-7. DOI: 10.1148/radiol.2020200230.

20. Zhao J., Zhao J., Mangalam A.K., et al. Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronavi-ruses. Immunity. 2016; 44 (6): 1379-91. DOI: 10.1016/j.immuni.2016.05. 006.

21. Coleman C.M., Sisk J.M., Halasz G., et al. CD8+ T cells and macrophages regulate pathogenesis in a mouse model of Middle East respiratory syndrome. J Virol. 2017; 91 (1). DOI: 10.1128/jvi.01825-16.

22. Zhao J., Alshukairi A.N., Baharoon S.A., et al. Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses. Sci Immunol. 2017; 2 (14): eaan5393. DOI: 10.1126/sciim-munol.aan5393.

23. Lucena T.M.C., Silva Santos A.F., Lima B.R., Albuquerque Bor-borema M.E., Azevedo Silva J. Mechanism of inflammatory response in associated comorbidities in COVID-19. Diabetes Metab Syndr. 2020; 14 (4): 597-600. DOI:10.1016/j.dsx.2020.05.025

24. Zhang J.J., Dong X., Cao Y.Y., et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020 Feb 19. DOI: 10.1111/all.14238.

25. Wan S.X., Yi Q.J., Fan S.B., et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). medRxiv. 2020 [2020-0224]. URL: https://www.medrxiv.org/content/10.1101/2020.02.10.20021832v1. DOI: 10.1101/2020.02.10.20021832.

26. Raoult D., Zumla A., Locatelli F., et al. Coronavirus infections: epidemiological, clinical and immunological features and hypotheses. Cell Stress. 2020 Mar 2. DOI: 10.15698/cst2020.04.216.

27. Hamada H., Bassity E., Flies A., et al. Multiple redundant effector mechanisms of CD8+ T cells protect against influenza infection. J Immunol. 2013; 190 (1): 296-306. DOI: 10.4049/ jimmunol.1200571.

28. Zhou Y.G., Fu B.Q., Zheng X.H., et al. Aberrant pathogenic GM-CM+T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. BioRxiv. 2020 [2020-02-24]. DOI: 10.1101/ 2020.02.12.945576.

29. Braciale T.J., Sun J., Kim T.S. Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol. 2012; 12 (4): 295305. DOI: 10.1038/nri3166.

30. Waffarn E.E., Baumgarth N. Protective B cell responses to flu-no fluke! J Immunol. 2011; 186 (7): 3823-9. DOI: 10.4049 jimmunol. 1002090.

31. Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006; 124 (4): 783-801. DOI: 10.1016/j.cell.2006.02.015.

32. Hashimoto Y., Moki T., Takizawa T., et al. Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. J Immunol. 2007; 178 (4): 2448-57. DOI: 10.4049/jim-munol.178.4.2448.

33. Betakova T., Kostrabova A., Lachova V., et al. Cytokines induced during influenza virus infection. Curr Pharm Des. 2017; 23 (18): 2616-22. DOI: 10.2174/1381612823666170316123736.

34. Iwasaki A., Pillai P.S. Innate immunity to influenza virus infection. Nat Rev Immunol. 2014; 14 (5): 315-28. DOI: 10.1038/nri3665.

35. Shimabukuro-Vornhagen A., Godel P., Subklewe M., et al. Cytokine release syndrome. J Immunother Cancer. 2018; 6 (1): 56. DOI: 10.1186/s40425-018-0343-9.

36. He J.H., Tao H.Y., Yan Y.M., et al. Molecular mechanism of evolution and human infection with the novel coronavirus (2019-nCoV). Biorxiv, 2020 [2020-02-24]. URL: https://www.biorxiv.org/content/10.1101/2020.02.17.952903v1. DOI: 10.1101/2020.02.17.952903.

37. WHO. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected. URL: https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected. (date of access January 28, 2020)

38. Chen L., Xiong J., Bao L., et al. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 2020; 20 (4). DOI: 10.1016/s1473-3099(20)30141-9.

39. Zumla A., Chan J.F., Azhar E.I., et al. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov. 2016; 15 (5): 327-47. DOI: 10.1038/nrd.2015.37.

40. Li H., Wang Y.M., Xu J.Y., et al. Potential antiviral therapeutics for 2019 novel coronavirus. Chin J Tuberc Respir Dis. 2020; 43: E002.

41. Agostini M.L., Andres E.L., Sims A.C., et al. Coronavirus susceptibility to the antiviral remdesivir (gs-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio. 2018; 9 (2): e00221-18. DOI: 10.1128/mBio.00221-18.

42. Holshue M.L., DeBolt C., Lindquist S., et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020; 382 (10): 92936. DOI: 10.1056/NEJMoa2001191.

43. Aguiar A.C.C., Murce E., Cortopassi W.A., et al. Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. Int J Parasitol Drugs Drug Resist. 2018; 8 (3): 459-64. DOI: 10.1016/j. ijpddr.2018.10.002.

44. Savarino A., Boelaert J.R., Cassone A., et al. Effects of chloroquine on viral infections: an old drug against todays diseases? Lancet Infect Dis. 2003; 3 (11): 722-7. DOI: 10.1016/S1473-3099(03)00806-5.

45. Vincent M.J., Bergeron E., Benjannet S., et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005; 2: 69. DOI: 10.1186/1743-422X-2-69.

46. Golden E.B., Cho H.Y., Hofman F.M., et al. Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. Neurosurg Focus. 2015; 38 (3): E12. DOI: 10.3171/2014.12.FOCUS14748.

47. Wang M., Cao R., Zhang L., et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30 (3): 269-71. DOI: 10.1038/s41422-020-0282-0.

48. Cvetkovic R.S., Goa K.L. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs. 2003; 63 (8): 769-802. DOI: 10.2165/00003495-200363080-00004.

49. Arabi Y.M., Asiri A.Y., Assiri A.M., et al. Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-p1b (MIRACLE trial): statistical analysis plan for a recursive two-stage group sequential randomized controlled trial. Trials. 2020; 21 (1): 8. DOI: 10.1186/s13063-019-3846-x.

50. Chu C.M., Cheng V.C., et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004; 59 (3): 252-6. DOI: 10.1136/thorax.2003.012658.

51. Lim J., Jeon S., Shin H.Y., et al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J Korean Med Sci. 2020; 35 (6): e79. DOI: 10.3346/jkms.2020.35.e79.

52. Wang Z., Chen X., Lu Y., et al. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends. 2020; 14 (1): 64-8. DOI: 10.5582/bst.2020.01030.

53. Munster V.J., Koopmans M., van Doremalen N., et al. A novel coronavirus emerging in China - key questions for impact assessment. N Engl J Med. 2020; 382 (8): 692-4. DOI: 10.1056/ NEJMp2000929.

54. Liu Y., Sun W., Li J., et al. Clinical features and progression of acute respiratory distress syndrome in coronavirus disease 2019. medRxiv. 2020 [2020-02-24]. URL: https://www.medrxiv.org/content/10.1101/2020.02.17.20024166v3. DOI: 10.1101/2020.02.17.20024166.

55. Tetro J.A. Is COVID-19 receiving ADE from other coronaviruses? Microbes Infect. 2020; 22: 72-3. DOI: 10.1016/j.micinf.2020.02.006.

56. Kostinov M.P. (ed.). New in the clinic, diagnosis and vaccination of controlled infections. Moscow: Meditsina dlya vsekh, 1997: 110 p. (in Russian)

57. Kostinov M.P., Lavrov V.F. New generation vaccines for the prevention of infectious diseases. 2nd ed., revised. Moscow: MDV, 2010: 192 p. (in Russian)

58. Kostinov M.P., Zverev V.V. (eds). Vaccination against hepatitis B, influenza and rubella in adult patients with chronic diseases. A practical guide. Moscow: Meditsina dlya vsekh, 2009: 196 p. (in Russian)

59. Chuchalin A.G., Yasnetsov V.V. (eds). Federal guidelines for the use of medicines (formulary system, reference publication). Issue XVII. Moscow: Vidoks, 2016: 1045 p. (in Russian)

60. Xie Hualing, Lv Lucheng, Yang Yanping. Global coronavirus vaccine patent analysis. Chin J Bioeng. 2020 [2020-02-24]. URL: http://kns.cnki.net/kcms/detail/11.4816.Q.20200221.1853.002.html.

61. Fast E., Chen B. Potential T-cell and B-cell epitopes of 2019-nCoV. bioRxiv. 2020 [2020-02-24]. URL: https://www.biorxiv.org/content/10.1101/2020.02.19.955484v1. DOI: 10.1101/2020.02.19.955484.

62. Cheng Y., Wong R., Soo Y.O.Y., et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis, 2005; 24 (1): 44-6. DOI: 10.1007/s10096-004-1271-9.

63. Zhou B., Zhong N., Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med. 2007; 357 (14): 1450-1. DOI: 10.1056/NEJMc070359.

64. Hung I.F., To K.K., Lee C.K., et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis. 2011; 52 (4): 447-56. DOI: 10.1093/cid/ciq106.

65. General Office of the National Health Commission. Diagnosis and treatment of pneumonia with new coronavirus infection (trial fifth version). Chin J Integr Tradit Western Med. 2020 [2020-02-24]. URL: http://kns.cnki.net/kcms/detail/11.2787. R.20200208.1034.002.html.

66. Li H., Wang Y., Xu J., et al. 2019 new coronavirus antiviral therapy is available. Chin J Tuberc Respir Dis. 2020; 43: E002. DOI: 10.3760/cmaj.issn.1001-0939.2020.0002.

67. Barrett D.M., Teachey D.T., Grupp S.A. Toxicity management for patients receiving novel T-cell engaging therapies. Curr Opin Pediatr. 2014; 26 (1): 43-9. DOI: 10.1097/MOP.0000000000000043.

68. Grupp S.A., Kalos M., Barrett D., et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013; 368 (16): 1509-18. DOI: 10.1056/NEJMoa1215134.

69. Henter J.I., Chow C.B., Leung C.W., et al. Cytotoxic therapy for severe avian influenza A (H5N1) infection. Lancet. 2006; 367 (9513): 870-3. DOI: 10.1016/S0140-6736(06)68232-9.

70. Maschalidi S., Sepulveda F.E., Garrigue A., et al. Therapeutic effect of JAK1/2 blockade on the manifestations of hemophagocytic lymphohistiocytosis in mice. Blood. 2016; 128 (1): 60-71. DOI: 10.1182/blood-2016-02-700013.

71. Liu Guangyang, Zheng Libo, Wang Hao, et al. Research on mesenchymal stem cells in the treatment of new coronavirus pneumonia. Drug Eval Res. 2020 [2020-02-24]. URL: http://kns.cnki.net/kcms/detail/12.1409.R.20200216.1421.002.html.

72. Uccelli A., de Rosbo N.K. The immunomodulatory function of mesenchymal stem cells: mode of action and pathways. Ann N Y Acad Sci. 2015; 1351: 114-26. DOI: 10.1111/nyas.12815.

73. Ben-Mordechai T., Palevski D., Glucksam-Galnoy Y., et al. Targeting macrophage subsets for infarct repair. J Cardiovasc Pharmacol Ther. 2015; 20 (1): 36-51. DOI: 10.1177/1074248414534916.

74. Lee J.W., Fang X.H., Krasnodembskaya A., et al. Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells. 2011; 29 (6): 913-9. DOI: 10.1002/stem.643.

75. Jordan M.B., Hildeman D., Kappler J., et al. An animal model of hemophagocyticlymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood. 2004; 104 (3): 735-43. DOI: 10.1182/blood-2003-10-3413.

76. Johnson T.S., Terrell C.E., Millen S.H., et al. Etoposide selectively ablates activated T cells to control the immunoregulatory disorder hemophagocytic lymphohistiocytosis. J Immunol 2014; 192 (1): 84-91. DOI: 10.4049/jimmunol.1302282.

77. Russell C.D., Millar J.E., Baillie J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020; 395 (10 223): 473-5. DOI: 10.1016/S0140-6736(20)30317-2.

78. Zhou W., Liu Y.S., Tian D.D., et al. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther. 2020; 5: 18. DOI: 10.1038/s41392-020-0127-9.

79. Liu Y. Thinking about new drugs for treating coronavirus infections. Chin J Tuberc Respir Dis. 2020; 43 (2020-02-18). URL: http://rs.yiigle.com/yufabiao/1182253.htm. DOI: 10.3760/cma.j.issn. 1001-0939.2020. 0017.

80. Rao Dongmei. Research progress on pathogen-induced cytokine storm. Med Inform. 2014; 27 (2): 480-1. DOI: 10.3969/j.issn.1006-1959.2014.04.625.

81. Qiu Haibo, Li Xuyan, Du Bin, et al. Thinking about the treatment of critical new coronavirus pneumonia (1). Chin J Tuberc Respir Dis. 2020; 43 (202002-23). URL: http://rs.yiigle.com/yufabiao/1182629.htm. DOI: 10.3760/ cma.j.cn112147-20200222-00151.

82. Wang Y., Qi W., Ma J., et al. Preliminary exploration of clinical features and syndrome differentiation treatment of new coronavirus (2019-nCoV) pneumonia. J Tradit Chin Med. 2020 [2020-02-24]. URL: http://kns.cnki.net/kcms/detail/11.2166.R.20200129.1258.002.html.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
Aleksandr V. Gorelov
Academician of the Russian Academy of Sciences, MD, Head of Infection Diseases and Epidemiology Department of the Scientific and Educational Institute of Clinical Medicine named after N.A. Semashko ofRussian University of Medicine, Ministry of Health of the Russian Federation, Professor of the Department of Childhood Diseases, Clinical Institute of Children's Health named after N.F. Filatov, Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Deputy Director for Research, Central Research Institute of Epidemiology, Rospotrebnadzor (Moscow, Russian Federation)

Journals of «GEOTAR-Media»